PREVIOUS SECTION: Stationary Sequences and Processes

1.10  On  s-algebras, generated by a sequence of r.v.'s.

(1). Let  eq403 be a probabililty space,      eq256 ,  eq358 - a sequence of r.v.'s,

 eq404 .

For  eq405, put

 eq406

(A) Remind some properties of  s-algebras.

1) If  eq407 are  s-algebras on  eq059  eq109  eq409 is  s-algebra, too, but  eq410 - not! (in general).

2) More generally, let  eq170 be any parameter set,  eq411 are  s-algebras on  eq059  eq109  eq412 is  s-algebra, too.

Therefore, eq413 is a minimal  s-algebra,  eq414, that is   eq413 is an intersection of all s-algebras, that  eq415.

Since  eq416 .

(B) Some properties of  eq235 :

1)  eq417 ;

2)  eq418 (triangle inequality);

Indeed,  eq419

 eq109 eq420

Similarly,  eq421

3)  eq422 (since  eq423 );

4)  eq424 ;

5)  eq425 ;

Indeed,  eq426

 eq109  eq427

 

Lemma 12   eq428,  eq429,  eq430.

Proof.  Let  eq431 be the set of events  eq432 :  eq429 ,  eq430 .

1)  eq433 . Indeed,  eq297 ,  eq435 , take

 eq436

Therefore, it is sufficient to show that  eq431 is  s-algebra. Then  eq437 , and the proof is completed.

2) Prove that  eq431 is an algebra, i.e.

(i)  eq438 ;

(ii)  eq439 ;

(iii)  eq440 ,  eq441 .

(i) is obvious, (ii) follows from the property (3); (iii) follows from (5):

 eq442

3) Prove that  eq431 is a  eq056 -algebra:

(iii')  eq443 .

Put  eq444,  eq445 and  eq446.

  eq109 eq447

Choose

 eq448

and, for  eq449 ,

 eq450

Finally, put

 eq451

Then  eq452, for  eq453. Since  eq454 as  eq024,  eq456.

QDE

 

Lemma 13   Let  eq372 be a double-infinite sequence of r.v.'s,

 eq458

Then  eq459.

 

Problem No.8. Proof - for you!!!

(2). A sequence of independent r.v.'s.

 

Definition 10   For a sequence  eq080, the tail  s-algebra   is

 eq460

Note: Since  eq460  eq109 eq460 eq460

 

Definition 11   For a sequence  eq372,

 eq464

is right  tail  s-algebra and

 eq465

is left  tail s-algebra.

Examples...

 

Lemma 14  If  eq080 is a sequence of independent r.v.'s, then  eq466 is trivial, i.e.

 eq467

Proof.  

1)  eq468 ;

2) Since  eq469 ,  eq470 .

Therefore,

 eq471

 eq472

QDE

 

Lemma 15  If  eq372 is a sequence of independent r.v.'s, then both  eq473 and  eq466are trivial.

NEXT SECTION: On sigma-algebras, generated by a sequence of r.v.'s., II


File translated from TEX by TTH, version 1.58, Htex, and with Natalia Chernova as the TeX2gif-convertor.