PREVIOUS SECTION: Stopping Times - Generalization onto 2-dimensional case

1.9   Stationary Sequences and Processes

Discrete Time

Definition 8 (a) Let  eq366 be a sequence of r.v.'s.
It is
stationary, if  eq367,  eq368,  
 eq369,  eq370

 eq371

(b) Similarly,  eq372 is stationary, if  eq373, the above equality holds.

Continuous Time

 

Definition 8' (a) Let  eq374 be a sequence of r.v.'s.
It is stationary, if  eq367eq375,  
 eq369,  eq376

 eq377

(b) Similarly,  eq378 is stationary, if  eq379, the above equality holds.

 

Definition 9 A sequence of events  eq380 is stationary, if  eq381 is stationary.

 

Assume eq380 to be stationary,

 eq382eq383.

Introduce r.v.'s:

 eq384

eq384

eq384

eq384

Lemma 11 (a)      eq385 ;

(b)      eq386 ;

(c)      eq387    eq388

 

Remark 4  It is not obvious, in general.

Examples:  eq081 - i.i.d.,  eq389 .
a)  eq390 ;     b)  eq391 .

 

Proof  of Lemma 11.
(a)

 eq392

eq392

(b)

 eq393

eq393

eq393

(c)

 eq394

eq394

eq394

 eq109  eq395

QDE

 

Corollary 2   eq396,   eq397.

Proof.  Note:

 eq398

 eq399

   eq109 eq400

eq400

eq400

eq400

eq400

 eq401 and  eq402 are either finite or infinite simultaneously.

QDE

NEXT SECTION: On s-algebras, generated by a sequence of r.v.'s.


File translated from TEX by TTH, version 1.58, Htex, and with Natalia Chernova as the TeX2gif-convertor.