PREVIOUS SECTION: On sigma-algebras, generated by a sequence of r.v.'s., I

 

(3). A stationary sequence of r.v.'s.

 

Definition 12  A sequence  eq080 (or  eq372) is stationary, if

 eq474 (or without "eq475"),

 eq476 (or  eq477),

 eq478

 eq479

In particular, all  eq115 are identically distributed and all finite-dimensional vectors  eq480 are i.d. (for a fixed  eq481).

Examples

1)  eq081 - i.i.d.
2)  eq482
3)  eq483 ,  eq484

Introduce a shift transformation  eq485 on the set of  eq413-measurable (or  eq486-measurable) r.v.'s:

1)  eq487  eq083

2) if  eq489, then  eq490

3) if  eq491, then  eq492 .

Note:  eq485 is measure-preserving:   eq493.

Introduce a shift transformation  eq485 on  eq413 (or  eq486):

 eq494 iff eq494 is eq494measurable iff eq494  eq495 is eq496-valued.
Then

 eq497 iff eq497

For any  eq498, introduce  

eq499.

In the case of  eq486 we can introduce  eq500, too. And eq501- identical transformation.

 

Definition 13 A  eq413-measurable (or  eq486 -...) r.v.  eq074 is invariant (w.r.to  eq485), if

 eq502

An event  eq494 (or  eq504) is invariant (w.r.to  eq485), if

 eq505

Note that  eq506 a.s.  eq034  eq097 ,  

eq509

Comments, examples...

 

Definition 14 A stationary sequence  eq081 is ergodic (w.r.to  eq485), if      eq428 (eq494),

 eq512 is invariant eq109 eq512

(or eq074 is invariant eq109 eq513 a.s.)

 

Remark 5 All invariant events (sets) form a  s-algebra  eq548 (invariant  s-algebra).

 

Lemma 16 (1)  eq428 (or  eq504) the sequence of events  eq517 (or  eq518) is stationary;

(2) If  eq081 is stationary egrodic, then  eq428 (or  eq504) with eq519 holds

 eq520

Proof.   (1) follows from definitions.

(2) Set  eq521 , then

 eq522

and  eq523

 eq109 eq524 eq109 eq524 is invariant

 eq109 eq525 .

But  eq526 .

QDE

 

Lemma 17

If  eq512 is invariant, then  eq528 such that  eq529 .

 

Proof.   (a) The case  eq413; (b) the case  eq486.

Problem No.10. Proof at (b) - for you!!!

1) Set  eq530 ,  eq531 . Then

 eq532

and  eq533 . But

 eq534 eq109 eq534

2) For  eq449 , put  eq535 .

Note:  eq536 and  eq537 ,

 eq538

Set

 eq539 eq109 eq539 and eq539

But  eq540 .

QDE

 

Remark 6 In the case  eq486, the "symmetric" statement is true, too: if   eq512 is invariant, then  eq541 such that  eq529.

 

Corollary 3 Any i.i.d. sequence is stationary ergodic.

Indeed,  eq466 is trivial  eq109 if  eq512 is invariant,  eq543 ,  eq544 and  eq529,    

then eq512a.

 

Remark 7 There exists a number of more weaker conditions (than i.i.d. ones) that imply the "triviality" of the tail s-algebra  eq466 and, as a corollary, the ergodicity of a stationary sequence.

For instance, introduce the following "mixing" coefficients:

 eq546

One can show that if  eq547 as  eq454 , then  eq466 is trivial.

But, in general, there are examples when  eq466 is not trivial, but  eq548 is (i.e. the sequence is ergodic).

Example   eq549 ; eq550

Then

 eq551


File translated from TEX by TTH, version 1.58, Htex, and with Natalia Chernova as the TeX2gif-convertor.