PREVIOUS SECTION: Stopping Times

1.8   Generalization onto 2-dimensional case

Let  eq331 and  eq332 be two sequences;  eq333 be a  eq056 -algebra, generated by

 eq334

 

Definition 7 A pair of r.v.'s  eq335 is a ST w.r. to  eq336 and  eq337 ,

if  eq338

eq338

 

Lemma 7 If  eq339 and  eq340 are two mutually independent sequences and if  eq341 is a ST, then

1) each of the sequences  

eq342

is i.i.d., and they are mutually independent;

2)  eq343;  eq344;

3)  eq345 and a random vector

 eq346

are mutually independent.

Proof  - omitted.

Lemma 8 In conditions of Lemma 7, assume, in addition, that

 eq347

Then the sequence  eq080,

 eq348

is i.i.d.;      eq349.

Proof.  

We have to show that  eq350 ,  eq351

 eq352

1)  eq083 ,  eq354

 eq355

eq356
eq356
eq356
eq356
eq356

 2)

Problem No.6. Prove for joint distributions - by induction arguments.

QDE

Another variant of generalization on 2-dimensional case.

 

Lemma 9 Assume that

(i)   eq357 is a sequence (eq358) of independent random vectors;

(ii) each of  eq339 and  eq340 is an i.i.d. sequence;

(iii)  eq359;

(iv)  eq341 is a ST and  eq360.

Then

 eq361

is an i.i.d. sequence; eq349.

Proof  is very similar to that of Lemma 8 - omitted.

Finally, the last generalization (of Lemma 9).

Lemma 10 Replace in the statement of Lemma 9 (if  eq362: ...)
(i) by (i') eq363is an i.i.d. sequence;

and

(iv) by (iv')  eq341 is a ST,
eq364
and  eq365 .

Then

 eq348

is an i.i.d. sequence;  eq349.

 

Problem No.7. Prove Lemma 10.

 

 

NEXT SECTION: Stationary Sequences and Processes


File translated from TEX by TTH, version 1.58, Htex, and with Natalia Chernova as the TeX2gif-convertor.