27.03.2020 - «Асимптотика самой правой точки ветвящегося случайного блуждания при наличии тяжелых хвостов распределений»

На семинаре мы рассмотрели ветвящийся процесс Z_n , эволюционирующий по следующей схеме: в начальный момент времени n=0 существует одна частица; каждая частица, существующая в момент времени $n\geq 0$, независимо и от других, и от предыстории делится на случайное число потомков, причем, распределение их количества, вообще говоря, может меняться от поколения к поколению.

Более формально,

$$Z_0=1, \ Z_{n+1}=\sum_{j=1}^{Z_n}\zeta_j^{(n)}$$
 для $n\geq 0,$

причем последовательность случайных величин $\{\zeta_j^{(n)}\}_{j,n=0}^\infty$ состоит из независимых и при каждом $n\geq 0$ одинаково распределенных случайных величин таких, что $\zeta_j^{(n)}\geq 1$ при любых j,n.

Мы предполагаем, что выполнено следующее условие затухания:

$$\prod_{n=0}^{\infty} \mathbb{E}\left[\zeta_1^{(n)}\right] < \infty. \tag{1}$$

Смысл условия проясняется следующей леммой:

Лемма 1. Пусть выполнено условие (1). Тогда существует положительная целочисленная интегрируемая случайная величина Z_{∞} такая, что

$$Z_N o Z_\infty$$
 п.н. и в L_1 при $N o \infty$.

Более того, момент прекращения ветвления $\nu = \inf\{n \geq 1 : Z_n = Z_\infty\}$ конечен с вероятностью единица.

Затем, мы изучили свойства случайных величин ν и Z_{∞} , описанные следующими двумя леммами:

Лемма 2. Пусть выполнено условие (1), $q_n = \mathbb{P}\left(\zeta_1^{(n)} \neq 1\right)$.

- 1. Если $\sum_{n=0}^{\infty} n^s q_n < \infty$ для некоторого $s \geqslant 1$, то $\mathbb{E}\left[\nu^s\right] < \infty$.
- 2. Если $\limsup_{n\to\infty}q_ne^{\lambda n}<\infty$ при некотором $\lambda>0$, то $\mathbb{E}\left[e^{\alpha\nu}\right]<\infty$ для $ecex\ \alpha<\lambda$.

Лемма 3. Пусть

$$\prod_{n=0}^{\infty} \mathbb{E}\left[\left(\zeta_1^{(n)}\right)^{1+\varepsilon}\right] < \infty$$

для некоторого $\varepsilon > 0$. Тогда $\mathbb{E}\left[Z_{\infty}^{1+\varepsilon}\right] < \infty$.

Далее, мы перешли к рассмотрению ветвящихся случайных блужданий. Каждому ветвящемуся процессу можно естественным образом сопоставить ориентированное случайное дерево $\mathcal{T}=(\mathcal{V},\mathcal{E})$ со счётным множеством узлов, построенное по следующему рекурсивному правилу: каждый узел $v_j\in\mathcal{V}$ уровня $n\geqslant 0$ имеет ровно $\zeta_v=\zeta_j^{(n)}$ инцидентных ему узлов уровня n+1.

Путь π представляет собой произвольный путь в графе \mathcal{T} , начинающийся в корне этого дерева. Через $|\pi|$ будем обозначать длину пути π . Иными словами, путь — это любая (конечная или бесконечная) генеалогическая последовательность частиц, в которой каждая следующая частица — прямой потомок предыдущей, а первая частица — прародитель всей системы частиц.

Мы рассмотрели соответствующее ветвящемуся процессу Z_n ветвящееся случайное блуждание $S(\pi) = \sum_{e \in \pi} \xi_e$, где с.в. $\{\xi_e\}_{e \in \mathcal{E}}$ независимы и имеют одно распределение F, а π — произвольный путь в графе \mathcal{T} с началом в корне этого дерева, причем, последовательность случайных величин $\{\xi_e\}_{e \in \mathcal{E}}$ не зависит от последовательности $\{\zeta_j^{(n)}\}_{j,n=0}^{\infty}$. Обозначим через $R_n = \sup_{\pi:|\pi| \leqslant n} S(\pi)$ — самую правую точку ветвящегося

Обозначим через $R_n = \sup_{\pi: |\pi| \leqslant n} \tilde{S}(\pi)$ — самую правую точку ветвящегося случайного блуждания вплоть до поколения $n \geqslant 1$. Пусть μ — неотрицательная целочисленная случайная величина.

При выполнении условия (1) мы изучили асимптотику хвостов распределений случайных величин R_{μ} и $R \equiv R_{\infty} = \sup_{\pi} S(\pi)$ — самой правой точки ветвящегося случайного блуждания во всех поколениях (Теоремы 1 и 2).

Теорема 1. Пусть σ -алгебры $\sigma(\mu; \zeta_j^{(n)}, n \geqslant 0, j \geqslant 1)$ и $\sigma(\xi_e, e \in \mathcal{E})$ независимы, $\mathbb{E}\left[\mu Z_{\mu}\right] < \infty$, $\mathbb{E}\left[\xi\right] < 0$ и F — сильно субэкспоненциальное распределение. Тогда

$$\mathbb{P}(R_{\mu} > x) \sim \mathbb{E}[\eta_{\mu}] \cdot \overline{F}(x) \ npu \ x \to \infty.$$

Теорема 2. Пусть выполнено условие (1), $\mathbb{E}[\xi] = -a < 0$ и F - cильно субэкспоненциальное распределение. Тогда

$$\mathbb{P}(R > x) \sim \frac{\mathbb{E}[Z_{\infty}]}{a} \cdot \overline{F}_I(x) \ npu \ x \to \infty. \tag{2}$$