
We consider the last-passage percolation model on oriented complete graphs
with Gumbel weights. This model is defined through the following recursive
equation: W0 = 0 and
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with (G(n)
j , n ≥ 0, j ≥ 0) i.i.d. standard Gumbel random variables.

By standard properties of Gumbel random variables, observe that one can
rewrite the above formula as
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where (Gn, n ≥ 1) are i.i.d. Gumbel random variables.
In particular, setting S(a)
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, we have
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Therefore, (S(a)
n , n ≥ 0) is a random walk. Using that Gumbel variables are L1,

we immediately deduce the following formula for the weight growth of the last
passage percolation in that case:
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Ei(1, ea) =: va. (0.2)

Note that we have

va = ea(−a+ γ − 1)(1 + o(1)) as a→∞.

It would be interesting to compare it to the Barak-Erdős graph. Using a simple
comparison setting

(G+ a) ≥ ε1{G+a>ε} −∞1{G+a<ε},

we have
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)
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We can also take interest in the path being the rightmost one at time n.
Observe that
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therefore we can construct an infinite path as follows: starts with the random
walk (−Sn, n ≥ 0) and then define recursively the value of wn by setting

P(wn+1 = j + k|S,wn = k) = eGj+k−Sk .

It consists of a random walk, whose step distribution can be computed explicitly.
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