We consider the last-passage percolation model on oriented complete graphs with Gumbel weights. This model is defined through the following recursive equation: $W_{0}=0$ and

$$
\begin{equation*}
\forall n \geq 0, W_{n+1}^{(a)}=\max _{j \leq n}\left(W_{j}^{a)}+G_{j}^{(n+1)}-a\right) \tag{0.1}
\end{equation*}
$$

with $\left(G_{j}^{(n)}, n \geq 0, j \geq 0\right)$ i.i.d. standard Gumbel random variables.
By standard properties of Gumbel random variables, observe that one can rewrite the above formula as

$$
\forall n \geq 0, W_{n+1}^{(a)}=a+\log \left(\sum_{j=0}^{n} e^{W_{j}^{(a)}}\right)+G_{n+1}
$$

where $\left(G_{n}, n \geq 1\right)$ are i.i.d. Gumbel random variables.
In particular, setting $S_{n}^{(a)}=\log \left(\sum_{j=0}^{n} e^{W_{j}^{(a)}}\right)$, we have

$$
\begin{aligned}
S_{n+1}^{(a)} & =\log \left(e^{W_{n+1}^{(a)}}+\sum_{j=1}^{n} e^{W_{j}^{(n)}}\right) \\
& =\log \left(e^{S_{n}^{(a)}}+e^{G_{n+1}+a} e^{S_{n}^{(a)}}\right) \\
& =S_{n}^{(a)}+\log \left(1+e^{G_{n+1}+a}\right) .
\end{aligned}
$$

Therefore, $\left(S_{n}^{(a)}, n \geq 0\right)$ is a random walk. Using that Gumbel variables are L^{1}, we immediately deduce the following formula for the weight growth of the last passage percolation in that case:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} W_{n}^{(a)}=\mathbb{E}\left(\log \left(1+e^{G+a}\right)\right)=a+\gamma+e^{e^{a}} \operatorname{Ei}\left(1, e^{a}\right)=: v_{a} \tag{0.2}
\end{equation*}
$$

Note that we have

$$
v_{a}=e^{a}(-a+\gamma-1)(1+o(1)) \text { as } a \rightarrow \infty .
$$

It would be interesting to compare it to the Barak-Erdős graph. Using a simple comparison setting

$$
(G+a) \geq \varepsilon \mathbf{1}_{\{G+a>\varepsilon\}}-\infty \mathbf{1}_{\{G+a<\varepsilon\}},
$$

we have

$$
\begin{aligned}
v_{a} & \geq \varepsilon C(\mathbb{P}(G+a>\varepsilon))=\varepsilon C\left(1-e^{-e^{a-\varepsilon}}\right) \\
& \approx \varepsilon C\left(e^{a-\varepsilon}\right) \approx \varepsilon e e^{a-\varepsilon}\left(1-c /(a-\varepsilon)^{2}\right) .
\end{aligned}
$$

We can also take interest in the path being the rightmost one at time n. Observe that

$$
\mathbb{P}\left(W_{n+1}=W_{j}+G_{j}^{(n+1)} \mid \mathcal{F}_{n}\right)=\frac{e^{W_{j}^{(a)}}}{\sum_{i=1}^{n} e^{W_{i}^{(a)}}},
$$

therefore we can construct an infinite path as follows: starts with the random walk $\left(-S_{n}, n \geq 0\right)$ and then define recursively the value of w_{n} by setting

$$
\mathbb{P}\left(w_{n+1}=j+k \mid S, w_{n}=k\right)=e^{G_{j+k}-S_{k}} .
$$

It consists of a random walk, whose step distribution can be computed explicitly.

