We consider the last-passage percolation model on oriented complete graphs
with Gumbel weights. This model is defined through the following recursive
equation: Wy =0 and
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with (G;"), n > 0,7 > 0) iid. standard Gumbel random variables.
By standard properties of Gumbel random variables, observe that one can
rewrite the above formula as
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where (G, n > 1) are i.i.d. Gumbel random variables.
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In particular, setting Sy(f) = log (ijo eWi ), we have
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= Sr(la) + log (1 + eG”'+1+a) .

Therefore, (S, n > 0) is a random walk. Using that Gumbel variables are L!,
we immediately deduce the following formula for the weight growth of the last
passage percolation in that case:
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Note that we have
Vg =e*(—a+y—1)(140(1)) as a — co.
It would be interesting to compare it to the Barak-Erdds graph. Using a simple
comparison setting
(G+a) > eligrasey — 0l{Gra<e)
we have
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We can also take interest in the path being the rightmost one at time n.
Observe that
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therefore we can construct an infinite path as follows: starts with the random
walk (—S,,n > 0) and then define recursively the value of w, by setting
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It consists of a random walk, whose step distribution can be computed explicitly.



