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Hence, for x ys y,

12m .,(, x, exp - K4(s, R) ds

X {-g4(t, e)lx-yl+lx-yl-[2(x-y, a(t,x)-a(t, y))

+ 2 Iri(t,x)-ri(t, y)l=-Ix-yl-= E (x-y, crj(t,x)-cri(t, y))2 -<_0
i=1

by (6). Moreover (assuming that Ka(t, R)>=O) we also have as a consequence of the
conditions o,.(zl, R) dzl <- 1, (7) and (8) that

( lI ds)( K6(R)Ix-ylKs(t’R)o(Ix-yl2))V,.(t,x, y)<=exp - Ka(s,R) K,(t, e)lx-Yl

_-< 2R exp - Kn(s, R) d (K4(t, R)+ Ks(t, R)K6(R)).

Condition (2) holds by Theorem 2, as desired.
The author is grateful to A. N. Shiryaev and N. V. Krylov for their attention to this

work.
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RECURRENCY OF AN OSCILLATING RANDOM WALK

B. A. ROGOZIN AND S. G. FOSS

(Translated by K. Durr)

1. By an oscillating random walk (see [17]) we mean a homogeneous Markov chain
Y {y,, n 0,. .} with state space Z {0, + 1, +/- 2,. .}, for which yo x, x Z,

P{y,,+I k +/ly,, l} P{ k}
/

I,pP{ k}+qP{ k}

if/<0,

if/>0,

if/=0,
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where k Z, Z,p+q 1,p,q > 0, and {:,,},=1 and are independent sequences of
independent and identically (in each sequence) distributed random variables with values in
Z. We shall assume that the greatest common divisor of the k for which P{: k} > 0 is
equal to 1 and that the same holds for :.

The recurrency of the chain Y (here and below by the recurrency or non-recurrency of
Y we mean the recurrency or non-recurrency of the state 0 of Y), as shown by examples, is
not expressed in terms of the recurrency of the homogeneous random walks $’=

{S’,,, n 0, 1,. .} and S"= {S, n 0, 1,. .},

s’, E ,, s’,’ :Z, n , 2,. ., S S 0.
k=l k=l

In Theorem 1 of this paper we give conditions for recurrency of Y in terms of the
distributions of the ladder heights of the random walks $’ and $". Use of Theorem i makes
it possible to find conditions for the recurrency of Y if the distributions of : and belong
to the region of attraction of stable laws (Theorem 2). In Section 4 we give examples
illustrating that Y can be non-recurrent (transient) even in the case when E: E:’ 0.

The results of this work are based on the following lemma (see [1]).

Lemma 1. The chain Y is recurrent if and only if

(1) Y C(h)C(-h)=o,
h=0

where C(0)= 1 and, for h 1, 2,...

C(h)= Y’. P{ min S >0, S, h},
n=l <i_n

C(-h)= E P{max S’ <0, S =-h}.
n=l lin

Let us define on the event A/ {suplzn< S’, > 0} the ladder random variables (see
[7]) T/ min {k: S, > 0} and H/ S/, and on the event A_ {infl_n< S < 0} the ladder
random variables T_ min {k" S < 0} and H_ S_. For the random variable r/and the
event A set E{r/; A} A r/dP.

Lemma 1 may be reformulated with the aid of the next assertion.

Lemma 2. Condition (1) is equivalent to

lim Re ((1 E{e"mtr/; A/})-I(1 E{e"-tr-; A_})-1) dl
tl’l

PROOF. For Itl < 1 and Im A 0 let

(2) C+(t, A)= 1+ E t" eihP{ min S >0, S’, h},
n=l h=l l_i_n

(3)
--1

eiXhp{C_(t,h)=l+ Y. t" Y. max S," <0, S’,’=h}.
n=l h=-oo

Since, for every t, Itl < 1, the series (2) and (3) are absolutely convergent,

1
C/(t, )C_(t, I d, Re (C/(t, , )C_(t, A )) d,

=1+ E t"P{min S>O,S,=h t"P{maxSf<O,S=-h}
h=l =1 lin =1 lin
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for 0 < < 1. From the equalities (see, for example, [2], p. 416)

C/(t, X)= 1 + t"E{e’XS;’; min S > 0}
n=l li’n

(4)
(1-- E{eiXU+tT+; A+})-1 for Im h _--> 0, It[ < 1,

C_(t, h )= 1 + Y t"E{eS;;; max S7 < 0}
n=l l_in

(5)
(1--E{eiXH-tr-; A_})-1 for Im h _--< 0, Itl < 1,

we obtain the lemma.
From (4) and (5) it follows that

(6) Y. C(h) e ’xh (1 h+(h))-I for Im h > 0,
h=O

0

(7) . C(h) e ’xh (1 h_(h))- for Im h < 0,

where

h+(h) E{e ’an/ A+} for Im A >= 0, h_(h)= E{e’XH- A_} for Im h -<_ 0,

hence, for h 1, 2,. ,
h h

C(h)= 2 pk(h), C(-h)= 2 p(-h),
k=l k=l

where, for h 1, 2,. , p(h are defined by the relations

(h.(1)) 2 p(h) e ’"h, (h_(1)) 2 p(h) e ’h.
h =k h=--

In a fashion similar to that in which Lemma 2 was proved we see from the relations

(1-th+(1))-=1+ t(h.(1)) 1+ e’"h tp(h),

(1- th_(1))- 1 + e "h tp(h
h=-m

which are valid for Itl < 1 and Im I 0, that condition (1) is equivalent to

(8) lim Re ((1 th+( ))-(1 th_( ))-) dl= m,

or to

(9) lim,t I- Re ((1 th+(A ))-) Re ((1 th_(A ))-) dA

The expressions for C(h) given by (6) and (7) permit us to derive the following
conditions for recurrency of Y.

Corollary 1. If P{A/} < 1 or P{A_} < 1, then Yis non-recurrent. If P{A/} P{A_} 1
and EH+ < or EH_< oo, then Y is recurrent.

PROOF. If P(A+} < 1 then from (6) we obtain Y. C(h)<, while since C(-h)<h=0
C < for h 1, 2,. , the chain Y is non-recurrent by (1).

In view of the condition EH/ < c and the renewal theorem, lih-,o C(h)- 1/EH/,
while since P{A_} 1, we have Y.h_o C(- h)- c. Hence h 0 C(h)C(- h)= o;
thus under the condition that P{A+} P(A_} 1, EH/ <, the char Y is recurrent by
Lemma 1.
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(10)

Note that EH+ < co, if 0<Es < co orE =0 and E(max (0, s ))z < co (see [3]).

2. Theorem 1. Iffor some 8 > 0

I_ I1 h+(A )1-111 h_(A )1-1 d, < co,

then the random walk Y is non-recurrent.

Re((1-h/(h))(1-h_(h)))->0 for I1< for some
(11)

I_Re ((1 h+(,))-1(1 h_(a co,))-1)

then the random walk Y is recurrent.

PROOF. For Im a 0, 0 < < 1,

since

Similarly,

Therefore

and

0 <-- Re ((1 th+(a ))-)<= I1 th+(a)1-1 <= t-111 h+(a)1-1,

Re (1- th+(A)) 1-t+t Re (1- h+(A))->_ Re (1- h+(A))>= 0,

Im (1 th+(a ))= Im (1 h+(a )).

0 _--< Re ((1 th_(a ))-1)<__ t-ill h_(a )1-1.

lim Re
1 1 dh

,1 1 th+(a) Rel th_(a)dh<= [1-h+(A)[ll h_(a)[
From this we obtain, in view of (9), that under the conditions of the first half of the theorem
the random walk Y is non-recurrent.

If the conditions of the second half of the theorem hold, then, in view of the condition

Re ((1 th+(a))-l(1 -th_(a ))-1)>____ 0,
for lal ,

lim Re Re
,tl (1 th+(a ))(1 th_(a ))

da ->
(1 h+(a ))(1 h_(a ))

by Fatou’s lemma. Here (since 11-h+/-(h)[> e >0 for <_-[h[<- rr)

lim Re ((1 th+(h ))-1(1 th_(h ))--1) d/ co,
d’l

i.e., (8) holds, and thus Y is recurrent.
Suppose that and : are identically distributed. In this case the oscillating random

walk Y is a homogeneous walk on the line, and conditions of recurrency for Y coincide
with the known conditions for a homogeneous walk. Indeed, since in this case (see [3])

(12) (1 -h+(a ))(1- h_(a ))B 1-E e ’ael,
where

B=exp E P{S’,,=O}/n
n=l

conditions (10) and (11) become, respectively,

I1 E e "el 1-1 d, < co and Re
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Turning again to an oscillating random walk, consider the case when and : are
identically distributed. We shall call such oscillating random walks symmetric. In this case
the following assertion holds.

Corollary 2. A symmetric oscillating random walk is recurrent if and only if

f_rw [1 h+(/ )[-2 d]

PROOF. Here H+ and H_ are identically distributed; thus h+(A h_(A ), where is
the complex conjugate of z, and therefore

Consequently, if

(1 h+(A ))(1 h_(a ))= l1 h+(A )12.

f_= I1 )1 -z dA <h+(

then, by the first part of Theorem 1, Y is non-recurrent while if

=ll h+(A)l-z dX

then, by the second part of Theorem 1, Y is recurrent.

3. Let {:k}=l be a sequence of identically distributed independent random variables,
S, ,= :k, So 0. Let the random walk S {S,, n 0, 1, 2,. .} be strongly attracted to
the stable law F, i.e., there is a sequence {a,},x of non-negative numbers such that
F(x)= lim,_. P{S, < a,x}; in this case set a a(1 F(0)), where a, 0< c <- 2, is the index
of stability of F. Set a 1 if S is relatively stable, i.e., there is a sequence of non-negative
numbers {a,}= such that S,/a, 1 as n --, oo in probability, and a 0 if {- S,} is relatively
stable. In all these cases we shall say that the random walk S is stable, and the number a is
called the index of stability of S. Note that if {S,} is stable with index of stability a, then
{- S,,} is stable and its index of stability equals ce a aF(0) if S is strongly attracted to the
stable law F, and equals 1-a otherwise.

Theorem 2. If the homogeneous walks {S’,,}= and {- S}= are stable with indices al
and az, then, for al + a2 < 1, Y is non-recurrent, while, for ax + a2 > 1, Y is recurrent.

To prove the theorem we need several assertions in which it is assumed that , and
:x are identically distributed and for S we use the notation introduced for S’ and S".

1. 0 _-< a _-< 1 (see [4]).
2. If 0 < a < 1, then the homogeneous random walk with jump distribution coinciding

with that of H/ is strongly attracted to the stable spectrally positive law with index a (see
[41).

3. If a 1, then the homogeneous random walk with jump distribution coinciding
with that of H+ is relatively stable (see [4]).

4. If S is strongly attracted to the stable law F with index c, 0 < a < 1, then for any
e > 0 there is a 6 > 0 such that 11 E e iAI / for 0 =< A <- 6.

This assertion follows from Theorem 2.6.5 in [5].
5. If S is relatively stable, then, for any e > 0 and sufficiently small 3 > 0,

(13) [1-E ea’l_->A l+e for 0<-A -<-6.

For relatively stable walks it is known that (see [6])

is positive for all sufficiently large t, and varies slowly at infinity, and

lim tP{l’ll t}/,(t): O.
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For h > O, consider

I: I_/:’sinxhIm E ei’ sin xh dP {:1 < x} h xdP {q < x} + sin xh dP {: < x}.
.Ix Xh xl>/x

We have

Ixl>/x sin IA dP{x < x}l P{I,11 > )}=o(hv(l/h ))

as h 0. Further, for f(x)= x- sin x,

I xf(xA )dP{ < x} f(xh du(x)= h f’(xh )v(x) dx

f’(x)(xlh) dx + +,
gO OA

where r/is some fixed scalar and hto < rt < 1. Note that Cx f (x) 0 for 0 x ,zr_.
Let us take to large enough so that v(t)>-O for t->to and v(xh-a)/v(h-1) <- 1/4x for

hto <= x -<_ r/. The validity of the last inequality for sufficiently large to follows immediately
from the Karamata representation for the slowly varying function v(t) (see [7], p. 281).
Thus, as h --> 0,

.,(x:1121<--v(1/x)
,o If’tx)l dx<=cv(1/h) 4dx<=Crtv(1/h)’

Iill-<- If’(x)l I(x/A )l dx O(A
"0

since ]v(y)[ is bounded for 0-< y _-< t.
Further, use of the Karamata representation for v(t) makes it possible to see without

difficulty that limx_,o v(xh-1)/v(h-) 1 uniformly in x, r/<-x <- r. Thus

Ih- v(1/h)l <_- f’(x)(v(x/h)-v(1/h))dx + v(1/h) [’(x)dx

and

=< (# 1(/ )P(I// )+ C,?v(l/h

(491(/)’-" C7/" Jrl [v(XA-1)/v(A-1)-- II dx -0 as A -->0.

Combining the estimates for/-1, 12 and 13 we obtain

li lI/ v(h-)- ll <= 2Cn,

while, since rt is arbitrary, limx_,o//V(h-1) 1, whence there immediately follows the
relation

(14) lim Im E eia*I/hv(h-) 1,
hO

and hence inequality (13) as well.
6. If the random walk S is stable with a 1, then, for any e > 0 and all sufficiently

small h > 0,

h 1+ <_-- Im (1- h+(h))<_- h - Re (1- h+(h))<h 1-
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The first relation follows immediately from Assertion 3 and relation (14). The
inequality for Re (1 h/(A)) follows from that fact that

where

(1 -cos xh dP {H+ < x <- 2 sin
hx 2

dP {H/ < x}

=< 2 sin -- dP {H/ < x} + 2P H/ >
"0

-<_ 2 Im h+(h/2)+ rC2(h )Xv(l/A ),

2(A)=2P{H+>2rr/A}/Av(A-1)-O as A-+0.

7. If the random walk S is stable and 0 < a < 1, then, for any e > 0 and all sufficiently
small A > 0,

X+ _<_ Re (1- h+(X))<__ a a+" <_ hn (- h+(a))=< a-This assertion follows from Assertion 2 and arguments in [5], Chapter 2 6.
8. If the random walk S is stable and a 0, then ]1 h+(A)l => A for any e > 0 and all

sufficiently small a > 0.
Indeed, let a 0. If {S,} is strongly attracted to the stable law F with index a, then

since c(1-F(0))= 0 we have F(0)= 1, whence it follows that 0<a < 1. Hence {-S,} is
stable with index a, and therefore applying Assertion 7 to h_(a we obtain for all sufficiently
small A > 0 that [1 h_(h )[ _-< h o-e/3.

Further, in view of the factorization identity (12) and Assertion 4, for all sufficiently
small h > 0,

A +/.3[1-E ei[
>_ >heII-h+(A)[=

Bll_h_(a)l_BA,,_/

If a 0 and {- S,} is relatively stable, then applying Assertion 6 to h_(A) we see that
I1- h_(x)[-<a -/ for all sufficiently small A >0. Use of Assertion 5 and the identity (12),
as in the preceding case, yields the estimate I1- h+(,)[ a .

Let us turn directly to the proof of Theorem 2.
Let al+a2< 1, take e>0so that a,+a2+2e < 1. Then

I1 h+(a)l-ll h_(A)1-1 dA <= 2 A-’I-A -’2- dA < oo.

Here for l1 h+(a)l and l1 h_(a )1 we have used the lower estimates contained in assertions
7 and 8. Whence, using Theorem 1, we have the non-recurrency of Y.

Let a + a2 > 1. Take e > 0 so that al+ a2-6e > 1. Then

fs Im h+(a Im h_(a dA
Re ((1 h+(A ))-1(1 h_(A ))-1) da -> 2 Jo ([1 h+(h)[[1 h_(a)l)

>2Io Aal+’A
h 2(ax_e)A 2(a2_e dh

2 A-a-/ dl

Here for I1 h.(a)l and I1 h_(1)l we have used the upper estimates, and for Im h/(A) and
Im h_(A) the lower estimates contained in assertions 6 and 7. Theorem 1 yields, also in

this case, the desired assertion as to the recurrency of Y.
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4. In conclusion we shall give examples of non-recurrent random walks Y with
E: E: 0. Set, for 2 > a > 1,

P{:i k}= k-’-l/(((a)+ ((a + 1)), k 1, 2,. ,
P{:i 1}= r(a)/(r(a)+ r(a + 1)),

P{:i 0} P{:i < 1} 0,

where r(/3)= Yk=l k-,/3 > 1. The distribution of $i’ coincides with that of
It is obvious that E:i E 0 and that $’ is strongly attracted to the stable spectrally

positive law F,, for which, for ix > 0,

e dF,, (x) exp {ix }.

Let us show that al--ce- 1. Indeed, the random variable H equal to the first
positive sum in the sequence {-S’,}] has finite expectation since in this case E:i -0,
E(max (0, -:I))2< co (see [3]). Further, this yields, by Theorem 9 in [41, that aFt(0) 1
since H is relatively stable. From this it follows that S’ is stable with index a
a(1-F(0))=a-1. Obviously, a2=al, and thus for ce <3/2 the walk will be non-
recurrent by Theorem 2, while for a > 3/2 it will be recurrent. Use of Corollary 2 and more
precise estimates for I1 h+(, )1 allow one to conclude that for a 3/2 the walk is recurrent.

Now assume that $ is distributed as in the preceding example, while for/3 > 1 we have

n=l

cc(t)
P{ [2Cr(/3)] + i}=

3([2c0r(/3)1 + 1)’
0, 1, 2,

1
P{ 0}

2 [2C(()1 + 1’
and P{ k} 0 for the other values of k. Thus in this case Ei E 0.

From the results of [6] it follows immediately that {S} is relatively stable and
therefore a 0, aa 1, and consequently for a < 2 Y is non-recurrent by Theorem 2,
while for a > 2 (since EH+ < and P{A_} P{A+} 1) Y is recurrent by Corollary 1. In
this example the homogeneous random walk S" is stable, while the distribution of the
random variable does not belong to the region of attraction of any stable law
whatsoever.
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