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The ergodicity criterion for stochastically recursive sequences is given in terms of 
imbedded subsequences. Several examples are considered. 
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I. Introduction 

Let (~., B ~ )  and (~', B~/) be two measurable spaces, f :  5LY'X ~,/~ 5~" a 
measurable function and {~n, - ~ < n < o0}, {Wn, n >t 0} two sequences of ran- 
dom variables on the probability space (J2, ~a ,  ~ )  with values in ~ / a n d  ~'~, 
correspondingly. We shall say (see [1]) that {W,, n/> 0} is a stochastically 
recursive sequence (SRS) with driver ({~:,,}, f )  if it satisfies the relations 

W,+l =f(W~, ~:n), n>~0. (1) 

SRS is known to play an important role in queueing analysis. One can find 
the first steps in the studying of SRS in [2] in the case 5~= R d when the function 
f is monotone on the first argument. Borovkov (see [3]) obtained general 
ergodicity and stability results for SRS based on the ideas of the so-called 
renovation method. Franken et al. (see, e.g., [4]) proved several results for SRS 
based on the theory of point processes. The given results were applied for the 
study of queueing models (see also [5,6] and references in these papers). 

We shall suppose in this paper that ( ~ ,  ~.~) and (~,/, ~.~/) are separable 
metric spaces and {~,,} is a stationary metrically transitive sequence. 

We shall say that a sequence {IV,} has coupling ergodic property (CEP) if there 
exists a stationary sequence {W"} such that 

P{W k = w  k for e a c h k > / n ) ~ l  a s n ~ o o .  (2) 
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Note  that the existence of  the stationary sequence of the so-called renovating 
events (see [3]) is sufficient but  not necessary for CEP (see also [6,7]). Therefore  
it is interesting (at least) to formulate the criteria (necessary and sufficient 
conditions) for CEP, and we obtain one of them in this paper. More  specifically, 
we shall demonstra te  that if {W~} has CEP (where 1 ~< u I < " "  �9 < tJ  n < " "  �9 is a 
random sequence of a special form) then {W,} has CEP too. 

The idea of this criterion is close to the well-known ones in the theory of 
Markov chains and regenerative processes. For  example, assume that W n is a 
homogeneous  Markov chain with "posit ive" a tom x ~ X such that for this x the 
recurrence time r = min{k: W k = x / W  o =x} has finite mean and G.C.D. {n: P{r 
= n} > 0} = 1. Let  va < v2 < �9 �9 " be the consecutive recurrence times: W~+, = 
min{n > W0: W,, = x}. The sequence {W~} consists of constants. Particularly, it is 
stationary and has CEP. Therefore  the initial sequence {W~} is known to obtain 
CEP (see, e.g., [8, chapter  6]). 

2. Definitions and main result 

Introduce o--algebras ~ = o-{~k, k ~< n}, - ~ < n < oo and ~ - =  ~ = o'{~:k, -- oo 
< k < ~}. Define the measure-preserving shift t ransformation U of ~--measura- 
ble r.v.'s such that U~, = ~:n+l, and shift t ransformation T of  ~-measurab le  sets 
such that T{o): SCk(O))~B} = {w: SCk+I(W)~B}, B ~ ~e.'. We  shall use the nota- 
tion U n, T n, - ~ < n < o~ for the iterations of the corresponding transformations 
(see, e.g., [2]). 

Let  now {A n = TnAo, -oo < n < ~}, A o ~ ~-, P{A 0} > 0 be a stationary se- 
quence of events. Introduce random variables ~'0 - 0, v 1 = min{n > 0: I ( A  n) = 1}, 
v 1 = max{n < 0: I ( A  n) = 1}, b'k+ 1 = min{n > Vk: I ( A  n) = 1}, /d_k_ 1 = max{n < 
U k: I ( A , )  = 1}, k >/1; and var iables /z  k = v k - Vk_l, - -~  < k  < c~. Note  that u k 
are finite a.e. Here  I (A )  is an indicator of an event A. 

Introduce the space 

~ =  O {k} x ~ =  U {(k, y l , . . . , y k ) ;  yl . . . .  , y k ~ }  
k > ~ l  k > ~ l  

with ~r-algebra B ~ =  cr{,,~, k, k >~ 1}, where  ~ ' , k  = { O  = ( k ,  B ) ,  B E . .~ -k} .  De- 
fine the sequence 

( n  = . . . . .  

and measurable  function F:  ~ ' •  ~.~---, ~ of the form 

F ( x , ( k ,  Yl . . . . .  Yk))=f(k) (  X, Y l , ' ' ' , Y k ) ,  k~> 1, 

where  f(1)= f and 

f(k+l)( x,  Y l , ' ' ' , Y k + l ) = f ( f ( k ) (  x ,  Y l , ' ' ' , Y k ) ,  Yk+l) for k>~ 1. 
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The sequence 1~ n -= W~, n >~ 0, satisfies the recursive relations 

l~n +, = F(l~n, ( , ) ,  n~>0, 

i.e. it is SRS with the driver {{(n}, F}. Note that {(,} may not be a stationary 
sequence in general. Partially, if {~:n} is an i.i.d, sequence and events An belong 
to o--algebras o-{s~n_ 1) then {(n, n >/1} is an i.i.d, sequence. 

Assume that (2) takes place for a certain sequence {W n} of ~--measurable 
r.v.'s taking values in ~U. Therefore we shall say that {Wn} c-converges to {W n) 
(and write W,, ~ Wn). It follows from (2) that A -- min{n >i 0: W n = W n for 
all k >/n} is a.e. finite random variable. 

Introduce o--algebra 

k-<.}; 

= (e  e= on C; C 

probability measure P0(E) = Po(Ao n C) = P(A o A C ) / P ( A  o) and define the 
shift transformation T on the probability space (Ao, ~o, Po): if C T{(t, ~ 
DI, . : . . ,  ~k, ~ Dt ) ,k l  < " " " < kt,  Di ~ . ~ ,  1 <~ i <~ l, E =A o N C, then TE =A o 
n TC, where TC = {(I,1+1 ~D1 , . . . ,  ~:1,,+1 ~Dt}. One can define the shift trans- 
formation 0 similarly. 

LEMMA 1 

and L~ are measure-preserving shift transformations. 

It follows from lemma 1 that {~n} is a stationary sequence on the probability 
space ( A o, ,~o, Po). 

On the probability space (/2, .~-, P) define the random variables Wn, i = 
U-iWn+i, i,n >i O. Note that for every i >/0 the sequence {Wn, i, n >~ 0} satisfies 
the equations: Wn+l, i =f (Wn,  i, ~n), n >10. It is clear that if {W n} c-converges to 
the stationary sequence { W  n} then for every i >/0 the sequence {W,, i} c-con- 
verges to {W n} also. 

THEOREM 1 

The following two conditions are equivalent: 
(1) SRS { W  n} has CEP; 
(2) there exists a stationary sequence of events {A n = T'Ao},  P(A 0) > 0 and (on 

the probability space ( A  o, ,Y-o, P0)) the stationary sequence of r.v.'s {W n} 
such that for every i >/0 the sequence 

  O, o,i=Wo,i 
c-converges to  {~.~zn} on (Ao, ~o, Po). 
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Proof of  lemma 1 
W e  have to prove tha t  the  equa t ion  

P o ( ~ l + l ~ O l , . . . , 4 , , + l ~ O n )  = P o ( ~ l ~ O l , . . . , ~ n E O n )  (3) 

takes place for all in tegers  n >7 1, i 1 <  . . .  <in, -oo < l  < oo and for all sets 
D 1 , . . . ,  D ,  ~ ~ / .  For  the  sake of  simplicity, we shall obtain (3) for n = 1, 
D 1 = D = {k} • B, B ~ ~e /k ,  i 1 = 0. T h e  following equat ions  are  valid: 

Po{(/~ D}--- P{A0 (-'1 {]d,/+l = k, (~ul,...,~Vl+l) EB}}/P{A0} 
oo  

= y ' V { A o O { v , = r  , ~ l + l = k ,  ( f ~ , . . . , f r + k - 1 ) ~ B } } / P { A o }  
r=l 

o o  

= 1 / P { A 0 }  • Ee{Aon{,_,=r, 
r=l 

= P{A o A {~1 = k ,  (~o . . . .  ,~k-1)  ~ B } } / P { A o }  

= [ ]  

Proof of  theorem 1. 
It  is c lear  tha t  the  s t a t emen t  is valid for A o = / 2 .  
For  any - ~ < i,l < ~ in t roduce  r a n d o m  variables vt, / = Uiv~, tx~, i = Uitzt 

and ~l,i --- Ui~ (particularly,  vl, 0 = vl,/xt, 0 = / z  I and ~:l,0 --- ~l). For  any - ~ < i < 
we can def ine  the  probabil i ty space (A i ,  ~i ,  Pi) similarly to the  space 
(Ao ,  ~_.o, P0). On  the  space (A~, ~ ,  P~) we can in t roduce  the  shift t ransforma-  
tions ~//t and  ~ t ,  whe re  U/=--~/1 is such that  U//~,i = ~ +  1,i and  U/, T/ are  the  
i terat ions of  U/, T/, correspondingly.  

Le t  wn be the  s ta t ionary sequence  def ined  in t h e o r e m  1 and  x ~ 6~ be 
some constant .  D e n o t e  

ffzn,O = '~ on  the  event  Ao;  

on  the  event  A o; 

and  ff/n,i = Uq, fzn,o, _ ~  < n,i < ~. 

LEMMA 2 
U n d e r  the  condi t ions  of  t h e o r e m  1 the  equa t ion  

l~n+l,~ = F( l~n ,~  ( , )  

is valid P-a.e.  on  the  event  A o for every n. 

(4) 
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Proof 
Without loss of generality, we can prove (4) in the case n = 0 only. Note that 

<~o=~(~0o, ~oo)} 
e o,o; 

= Po(Oo% = wo,o; ~o'~ ,+1 ,o  = ~ , , o }  

=, ,o(< ,o  = ~' ,o; ~,+~,o = ~'+~, o } 

(~ = ~ ' ~  a s l - ~ .  [] = P0 ,0 

Define for k < I the events 

D~, l =A~ n h A l ,  where  ~ --- g2 - A j .  
\ j = k + l  

LEMMA 3 

Under  the conditions of theorem 1 

~ n + l , ~  = rpn,, 

P-a.e. on the event D~, t for every n, k < 1. 

( s )  

Introduce the stationary sequence {W"}: 

{ l~  ~176 on the event A0; 

W ~  
f~,(~-~,o, ~_~ .... ,e_l) 

w n  = u n w  O, - - r e < F /  < m .  

Proof 
We shall prove (5) in the case k = 0, n = 0. Note that 

P{Do,, N {1~l'~ = 1~~ 

{ I >I p D o , I  A l /po, ,  ~ - i - 1 1 ~ .  . 1,~o,o " - i  " . , ,+~,,, = Uo W~,o, 

and ~ - i - l ~  ~ - i  ~ ""l i+1,l = Uo W~,o P-a.e. on the event Do, l for every i > 0. Therefore  
the right hand side of the previous inequality converges to P{Do, t} as i --+ ~. [] 
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LEMMA 4 
Under  the conditions of theorem 1 

wn+l =f(  Wn, ~n) 

P-a.e. for every n. 

Proof 
It is clear that 

wl----'f,k+l,(I/~r-k'O, ~_k,...,~O)'~-f(wO, ~0) 

P-a.e. on the event A 1 and 

W 1 ~ri,0 ~ - k , i  = re ([/~r-k,O 
= = - J ( k + ~ ) ~  , ~ : - k  . . . .  ,sCo) 

I/~ r-kO ,~_1) ,  ~:o)---~f(W~176 ~o) ' ,  

P-a.e. o n t h e e v e n t  D k, 1 for k~>O. [] 

Now we can perform the concluding step of the proof. Define for k >1 0 the 
events 

E k = A  k C) ( 

1 

1 
N 

For every e > 0 let N - N(e)  > 0 be  such that P{ U Ai} >/1 - e. Then 
i=0 

P{W k = W  ~ for a l l k 1 > n } = P { W  n = W " }  

>i P = W n} f - )  A i 
i 

N 
= E P{(I'Vn = wn} nEk} 

k=0 
N 

= E v { ( v ~ w .  = w "-~} n r ~ e ~ } ,  
k=O 

and for l = n  - k  

v((u-~w,+~ = w'} n r-~ek} >~ v{ (~ .<  l) n r % }  -~ v (r  ~e~} = v(ekl 

as l -o oo. Here  Yk = min{v.: W~.,k - fie., k = 1~"}. Therefore  

lim infP{W k = W k for all k >i n} >f 1 - e 
Ft  .---) ~ 

for every e > 0. The proof  of theorem 1 is completed.  [] 
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4. Examples 

EXAMPLE 1 
Let L be a non-negative integer. We shall say (see [3]) that the event A n ~ ~ -  

is renovating on the interval (n - L,  n) for SRS {W n} if there exists a measurable 
function g such that 

Wn+, = g ( ~ n - L ' ' ' ' ' ~ n )  (6) 

P-a.e. on the event A n. The sequence of events {An, n > n 0} is the renovating 
sequence for SRS {W n} if there exist a non-negative integer L ~< n o and a 
function g such that (6) takes place for every n > n 0. Borovkov ([3]) obtained 
the following result: 

THEOREM 2 
If {An = TnAo, n > no}, P{A0} > 0 is a stationary renovating sequence for SRS 

{W~} then the sequence {W~} c-converges to a stationary one. 

Note that theorem 2 is a simple corollary of theorem 1. Indeed,  it is clear 
that the sequence 1 ~ " =  g ( ~ o - L , . . . ,  r is stationary on the probability space 
(A0,  ~0,  P0) and l~n0,i = W n~ P0-a.e. for every i > 0. 

EXAMPLE 2 
We shall apply theorem 1 to the queueing system with several types of 

customers. Define a stationary metrically transitive sequence {sen --- (%, %, Sn)} 
where  rn are inter-arrival times, S,, is the service time and cr n is the type of the 
nth customer, % ~ {1, 2, 3} a.e. Consider a 2-station open queueing system with 
3 types of customers and FCFS discipline. The nth customer has the type i if 
o- n = i. The customers of the first type are served on the first station, the 
customers of the second type on the second one, the customers of the third type 
on both stations in parallel. In this system the vectors of virtual waiting times 
{ W  n = (Wn,1, Wn,2)} satisfy the recursive relations: 

( ( W n ,  1 - { -Sn- -Tn ,  Wn,2- 'g-n)  + if o-,,= 1; 

Wn+l = { ( W n , 1 - - Y n ,  Wn,2 q'- Sn --q'n) + if % = 2; 

][i(max(W,,,1, Wn,2) + S n - % ) +  if cr n = 3; 

where i = (1, 1). 
Consider the sequence A n = {or n_ 1 

Vn+l--2 
(TPn,1 = E S i ' I ( ~  = 1), 

i=v n 
Vn+l-2 

~Dn,2 M-" E S i " I ( ~ = 2 ) , 
i=v,, 

= 3}. Denote  
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qb = max(q)  ,1, (/)n,2)Jr-Svn+,_l, where  {u.} were  de f ined  in sec t ion  2. It  is c lear  
tha t  on  the  probabi l i ty  space  (A0 ,  ~ 0 ,  P0) the  s e q u e n c e  {4).} is s ta t ionary  bu t  
may  be  no t  metr ica l ly  t ransi t ive in general .  T h e r e  exist several  vers ions  of  
suff ic ient  cond i t ions  for  the  met r ica l  transit ivi ty of  {q)~}. W e  shall cons ide r  one  
of  t hem.  Fo r  each  n > 0, i n t roduce  o--algebra ~, ,  g e n e r a t e d  s e q u e n c e  {~., ~:. + 1, 
. . . ) .  D e n o t e  by B the  tail o -a lgebra  B =- lira,,__,= ~ ' . .  

COROLLARY 1 
S u p p o s e  tha t  

(1) o--algebra • is trivial, i.e. it consists  of two e l emen t s  only: g2 and  ~; 
(2) Eo{qb o} < E%/P{Ao}. 
T h e n  the re  exists a s ta t ionary  s equence  {W ~} such  tha t  {141.} c -converges  to {W ~} 
for  any initial cond i t ion  Wo. 

Proof 
It  is c lear  tha t  the  s equence  {l~n =( l~n,  a, l~n,2) .} satisfies the  equa t ions  

1~,,,1 = ~. ,2  a.e. on  A 0 for  all n > 1. D e n o t e  u ~ =  W~, a and  no te  tha t  un+ a = 
F(u.,  ~.), w h e r e  func t ion  F has the  fo rm F(u,,, ~:n) = maX{~n,1, ~,,,2, u,, + q~. - 
T,,}. H e r e  

Un+l 

Z n =  E Ti'~ 
i = v  n 

~.-1,j" = max{0, S~o-1,3 - %.-1 ,  S~.-1,j + S~n--Z,j -- %~ -- %.--2' 

. . . ,  S v n _ l , j  + $7)n_2,  j "t- " " " -~ S v n _ l , j  - -  "l'Vn_ 1 - -  "rVn_ 2 . . . . .  'T~,n_l} 
and  Sk,j = Sk "I(ok =J) ,  J = 1, 2, 3. D e n o t e  q*. = max{~n, 1, g*~,2}, v.  = u .  - ~ . - 1 ,  
F .  = q). - T. - ~ .  T h e n  

V n + l = m a x ( 0 ,  v . + a / ~ n _ l + / ' . )  , n>~0 .  

U n d e r  cond i t ion  (1) the  s equence  { ~ - 1  +F,,} satisfies SLLN.  T h e r e f o r e  the  
ergodic i ty  cond i t ion  for  {v.} has the  fo rm 

Eo{a/~n_ 1 + Fn} = Eo{~ . - T.} 

= E0{~b.}  - E o { T . }  < 0 ,  

w h e r e  Eo{T 0} = E r  0 �9 Eo{v o} = Ero/P{Ao}. [] 
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