Stability of Polling Systems with State-Independent
Routing
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This paper deals with the stability study of polling systems with either finite or
infinite (countable) number of stations (queues) and with a finite number of servers
that poll (visit) the stations along some random (state-independent) routes. First,
we formulate “global” and “local” stability theorems for systems with a single server
and with a general stationary ergodic input. Their proofs are based on certain
monotone properties of underlying stochastic processes (see [15-17]). Second, we
give a stability criterion for systems with several servers, with a finite number of
stations and with i.i.d. driving sequences. The proof of the latter criterion (see [18])
is based on the fluid approximation approach.

Stability conditions for polling systems have undergone study rather recently
(see, e.g., [1-12]) and all available papers deal with systems with finitely many
stations and (except [2]) with either Poisson or renewal input.

Keywords: polling system, stability, stationarity, monotonicity, saturation rule, fluid
approximation.

81. Systems with a Single Server: “Global” Stability

Our approach is based on ideas of the so-called saturation rule [13].
Introduce a polling system with K < oo stations. Let (2, F, P) be a probability space.
All random variables below are considered on this space.

The input. By the input we mean a marked point process 1" with points T, (T = 0)
and marks &,. The sequence &, = (T, fin,0n),n = 0,£1,£2, ... is assumed stationary
and ergodic. Here 7,, = T,, — T,,_; is the interarrival time between customer (n — 1) and
customer n, p, is the number of the station to which customer n is directed, and o, is
his service time.

Let Er; = A1 be finite and positive; Eo; = 0 < oo; and P(uy = k) = pr > 0 for
every k=1,2..., 372 pr = L.
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The server route. Assume to be given a sequence {v;,w;}52_ of pairs of random
variables, where the random variable v; takes values 1,...,00 and equals the number
of the queue visited by the server jth in succession and the random variable w; > 0
is the walking time from queue v; to queue v;,;. Suppose that the sequence {v;,w,;}
can be partitioned into independent identically distributed (i.i.d.) segments of random
length (cycles); i.e., there exists an increasing sequence of integer-valued random variables
{ji}2 . such that the random vectors (“cycles of the route”)

1=—00
i = (li; Viit1y o5 Viiprs Wit 15 - - - 7wji+1)7 1€ Z,

are i.i.d. Here l[; = j;41 — Jj; is the number of queues (stations) visited by the server in
cycle 7. Assume that the cycles start with visiting the same queue. For definiteness, let
vj,+1 = 1 for all 4. Denote by ¢}, = I(vj,+1 = k) +...+I(vj,,, = k) the number of visits to
queue k in cycle i, where P(c;, > 0) > 0 for all k, and denote by ¥; = wj, 41+ ...+ wj,,,
the total walking time during the cycle.

Let L = El} < oo, W = Et¢); < oo, and Cy = Ecj < oo for all k. Assume the
sequences {n;} and {&,} to be independent.

By a route of the server in the empty system we mean a marked point random process
whose points are the starting times of the cycles and the distance between points equals
the total walking time during the corresponding cycle.

Denote by W = {W¥;, n;} the point process with points ¥; and marks 7;, i € Z, in which
Vg =0 and ¥; = ¥, _; + 1; is the finish time of cycle i if the server moves in the empty
system.

Consider also a stationary version (in continuous time) of the process ¥ which we

denote by (1) = (\Ifl(»l), 771(1))?2_00. Assign the number 0 to the first positive point of this
process, so that \I’(()l) >0 > \Il(_li a.s.

Denote by W(=™) n > 0, the stationary ergodic point process that is obtained from
the process W) by shifting each point to the left by the random variable E?:w oj and
is renumbered so that \I/(()_n) is its first positive point.

Since U™ and {&.}° . are independent, for every n > —1 the process U(=™ is
independent of the sequence {&;}72_ ., and its distribution coincides with the distribution

of ¥,

The service policies. If the server, on visiting station k at time j, finds z cus-
tomers in a queue, then it serves, without interruption, fi(z) = fi(z,D}) < z cus-
tomers in the FIFO order, and then moves to the next station of the route. Upon
service completion, customers leave the system. Here (for every k) the random variables
Di, j=0,£1,42 ... areii.d. Suppose that the service policies satisfy the conditions
P(fl(1) =1) = 6; > 0 and fl(z) < z as. forall z € Z*, k = 1,..., K, and belong to
the class M = {f : f(z,y) < f(x +1,y) < f(z,y) + 1 for all x € Z*, y € R}. We call
the class M the class of monotone service policies. For the service policies in M, there
always exists a (finite or infinite) limit

Fy = E lim fi(z, D]) = EF(Dj) < oo.

Henceforth the number [m,n| and the arguments U and 7" = {7} } in some character-
istic of the system (queue length, exhaustion time, etc.) signify that the characteristic is
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considered in the system that is governed by the route W of the server and to which only the
customers with numbers m < ... < n are submitted at respective times 7T}, < ... < T,.
By a nonempty cycle we mean a cycle during which there are customers in the system.

Denote by Xpn.n) = Xjmn (T, ¥) and )A(/[,kyl] = Xi_xy(T, W(=F)) the finish times of the
last nonempty cycles in the corresponding systems.

Given two systems of the above-described type with (possibly) different arrival times
of customers and the service policies, we shall write 7" < T a.s., provided that T,, < T
a.s. for all n, and write f > f’ a.s., provided that f,ﬁ(x) > f’i(m) a.s. forall k=1,2...,
j=1,2,..;xe€Z".

The above objects enjoy the monotonicity property:

IfT <T' and f > f" a.s. then

X (T) € Xpma)(T"), Xcka(T) < Xy (T7).
Introduce the following notations:

Xi(T) = Xp (1), Zu(T) = Zpy(T).

Assume the following condition to be satisfied:

(Al) EXl(T> < 0.

The condition (A;) is always valid for systems with finite number of stations.
Under condition (A;), we have

Lemma 1 (Law of Large Numbers). There exists a finite constant v > 0 such that

2] p . EZnn
=, lim ——=% =
n n—oo n
Zl—n—1 p . EZ_,
——— =y, lim —————— =~.
n n—oo n

Given an arbitrary 0 < ¢ < oo, denote by ¢T' the process that consists of the points
{cT;},i € Z, and the marks (c7;, it;, 05). The monotonicity property and (A;) imply

Lemma 2 . For every ¢ > 0, there ezists a nonnegative constant y(c) such that

P v(c);

moreover, v(c) decreases in ¢, whereas y(c) + cA\™! increases in c.

Denote

(0T
3(0) = tig2(0) = tign 22105



Theorem 1 . 1. ¥(0) = o +sup,, 775 W.

2. There exists lim,, )A(/[_nm in the sense of convergence a.s.

3. The event {lim,, )N([_n,o] < oo} has probability 0 or 1.

4. Let condition (Ay) hold. If lim )A(/[_n,o] (T) =0 a.s. thenp=XMy(0)>1. Ifp>1
then lim X, o(T) = oo a.s.

For the system governed by the process ¥(=™ let Qfﬁn’m] (t) stand for the queue length

at station k at time t; x{_,, . (¢), the residual service time at station k at time #; x{_, .. (t),

the residual interarrival time; 1j_,,,,(t), the cycle of the route in which the server is at
time ¢ (the random vector composed of the numbers of stations and the walking times
between them); and ¢_, m(t), the residual (total) walking time of the server in the cycle
Mnm) (1):

Set the corresponding quantities equal to zero if their values at time ¢ are not defined.
All above characteristics are assumed right continuous. Put

Yionm = {{Qf—n,m} (t)}zozp {Xf—n,m]@)}?:o? N—n,m] (t), Pl-n,m] (t),0<t<T,}.

Given random variables X and Y on the probability space (Q, F, P), we call X a copy
of Y if there exits a one-to-one measure-preserving F-measurable shift transformation 6
on 2 such that X(w) =Y (fw) for all w.

We say that the process X (t) is Palm-stationary (with respect to the nested times
{T,,}, where Ty = 0) if for every n the process {X"(t) = X(¢t +T,), t > 0} is a copy of
the process {X(t),t > 0}.

For the process {X(t), oo <t < 0o} and for any m = 1,2,..., put Y™ = {X(¢),0 <
t <Tn}

Denote by QF = 'flm] (T,,) the queue length at station k at time 7, in the polling
system governed by the process VU, set Q, = {QF: k=1,2,...}. Let Q, = >, QF stand
for the total queue length.

Theorem 2 . Assume that condition (A;) holds.

1. If p < 1 then, on the probability space (2, F, P), there exists a Palm-stationary
process {X (t), oo < t < 0o} such that for everym = 1,2, ... there is a sequence {Y™™}
of copies of the process ym for which

P(Y_nm # }v/"m) — 0 as n— oo.

In particular, there exists s stationary sequence {@(”); o0 <n < oo} such that

as n — oo.
2. If p > 1 then there exists k < oo such that Zle Q) — 00 a.8. asn — 0o.

Remark 1. It is noteworthy that the existence of the Palm version of a station-
ary process implies the existence of a stationary process in continuous time (and vice



versa) and some formulas are known that connect the distributions of these marked point
processes (see, for instance, [14]).

Remark 2. Extend the class of the service policies under consideration as follows:
Let B = {f : for every y there is lim, .. f(z,y) = F(y) < oo} and B = {f : for every y
there is lim, .o f(z,y) = F(y) < oo, f(z,y) < F(y) forally e R, x € Z1}.

It is easy to see that M C B C B. For the service policies in the class B , there exists

Fy = E lim fi(z, D]) = EF(Dj) < oo.

Theorem 3 Consider a system with service policies in the class B. If p <1 then Q,
15 bounded in probability; i.e.,
lim sup P(Q, > z) =0.
Theorem 4 Consider a system with policies in the class B. If p > 1 then there exists
k < oo such that 35, Q) 5 0o as n — oc.

~

The claim of Theorem 4 fails (in general) for systems with policies in the class B.

82. Systems with a Single Server: “Local” Stability

Consider a model with K < oo stations. Assume that p > 1, i.e. the “global” system is
unstable. The problem is: do some stable station still exist? We give a positive answer on
this question, but under slightly more restrictive assumptions on distributions of driving
sequences.

Assume that service time at each station k form a stationary ergodic sequence {o,(k)}
with finite mean o(k), all these sequences are mutually independent and do not depend

on the sequence {(7,, pt,)}. Put ay = & > 0 and permit stations in such an order that
algagg...ga;(.

For k=1,..., K, set

K
e =AO_o(i)p;+ ac(W + > o;p;F;C;))
j=1 j=k+1

(here 0 x oo = 0). Note that pr < pry1 for all k, and px = p.

Theorem 5 If pp < 1 for some k = 1,..., K, then there exists a stationary k-
dimensional sequence {Q (k)Y such that

P((Qp---,Qn) = Q" (k) — 1
as n — 0o.

Under assumption (A;), a similar result takes place for systems with infinite number
of stations. One can formulate natural analogs of Theorem 1-4 also.
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83. Systems with Finite Number of Stations and with
Several Servers

Consider a model with K < oo stations. Assume that interarrival times {7,,} form an
i.i.d. sequence with mean A7, each customer (independently of everything else) is sent
to station k =1,..., K with probability pp. Each server has its own regenerative routing
mechanism and service policies. All service policies are assumed to be limited: F) k(m) < 00
for any server m and for any station k. Within one cycle, a server m visits any station
k a random number of times with finite mean C’,gm), and its mean cycle walking time is

W,

Theorem 6 Assume interarrival times to have an unbounded distribution. Then the
model is stable if and only if p < 1.

The “unboundedness” assumption may be weakened variously. Here g = A% | 30 and
R and 8, r =1,..., R are defined by the following recursive procedure.
For1 <4, <K, 1<m< M, put
M Fm) (m)

(;Di,j — Z 7 zA

W + 3 6D DD

Set
(1) (i) ey P 1) 1)
i =Pl = QK= Ty g = IISI%ISHK a; .

Take K (1) = K. Assume that, for some k& > 1, we have previously defined K (1) >
K2)>...>K(r)>1and, for 1 <k <r, 1<i< K(k), we know the values of

pl(-k), gpgk), o™ and f*) = min; o)

7 A

Permit a sequence {1,2,..., K(r)} in such a way that (after permutation)

If a&” = Oé%)(r), then stop with the procedure and put R = r. Otherwise, set

K(r+1)=max{l: o > Ozl(?l}
and, for any 1 <i < K(r + 1), put

(r+1) _ (") (") (r) ) (r+1)

% = (q — Q) Pi = Pi,K(r+1);
(r+1)
Qlr D P ;ﬁ(r+1) — mina™Y.
' s o
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