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This paper deals with the stability study of polling systems with either finite or
infinite (countable) number of stations (queues) and with a finite number of servers
that poll (visit) the stations along some random (state-independent) routes. First,
we formulate “global” and “local” stability theorems for systems with a single server
and with a general stationary ergodic input. Their proofs are based on certain
monotone properties of underlying stochastic processes (see [15-17]). Second, we
give a stability criterion for systems with several servers, with a finite number of
stations and with i.i.d. driving sequences. The proof of the latter criterion (see [18])
is based on the fluid approximation approach.

Stability conditions for polling systems have undergone study rather recently
(see, e.g., [1-12]) and all available papers deal with systems with finitely many
stations and (except [2]) with either Poisson or renewal input.

Keywords: polling system, stability, stationarity, monotonicity, saturation rule, fluid
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§1. Systems with a Single Server: “Global” Stability

Our approach is based on ideas of the so-called saturation rule [13].
Introduce a polling system with K ≤ ∞ stations. Let 〈Ω,F , P 〉 be a probability space.

All random variables below are considered on this space.

The input. By the input we mean a marked point process T with points Tn (T0 = 0)
and marks ξn. The sequence ξn = (τn, µn, σn), n = 0,±1,±2, . . ., is assumed stationary
and ergodic. Here τn = Tn − Tn−1 is the interarrival time between customer (n− 1) and
customer n, µn is the number of the station to which customer n is directed, and σn is
his service time.

Let Eτ1 = λ−1 be finite and positive; Eσ1 = σ < ∞; and P(µ1 = k) = pk > 0 for
every k = 1, 2 . . .,

∑∞
k=1 pk = 1.
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The server route. Assume to be given a sequence {νj, wj}∞j=−∞ of pairs of random
variables, where the random variable νj takes values 1, . . . ,∞ and equals the number
of the queue visited by the server jth in succession and the random variable wj ≥ 0
is the walking time from queue νj to queue νj+1. Suppose that the sequence {νj, wj}
can be partitioned into independent identically distributed (i.i.d.) segments of random
length (cycles); i.e., there exists an increasing sequence of integer-valued random variables
{ji}∞i=−∞ such that the random vectors (“cycles of the route”)

ηi = (li; νji+1, . . . , νji+1
;wji+1, . . . , wji+1

), i ∈ Z,

are i.i.d. Here li = ji+1 − ji is the number of queues (stations) visited by the server in
cycle i. Assume that the cycles start with visiting the same queue. For definiteness, let
νji+1 = 1 for all i. Denote by cik = I(νji+1 = k)+ . . .+ I(νji+1

= k) the number of visits to
queue k in cycle i, where P(c1k > 0) > 0 for all k, and denote by ψi = wji+1 + . . .+ wji+1

the total walking time during the cycle.
Let L = El1 < ∞, W = Eψ1 < ∞, and Ck = Ec1k < ∞ for all k. Assume the

sequences {ηi} and {ξn} to be independent.
By a route of the server in the empty system we mean a marked point random process

whose points are the starting times of the cycles and the distance between points equals
the total walking time during the corresponding cycle.

Denote by Ψ = {Ψi, ηi} the point process with points Ψi and marks ηi, i ∈ Z, in which
Ψ0 = 0 and Ψi = Ψi−1 + ψi is the finish time of cycle i if the server moves in the empty
system.

Consider also a stationary version (in continuous time) of the process Ψ which we

denote by Ψ(1) = (Ψ
(1)
i , η

(1)
i )∞i=−∞. Assign the number 0 to the first positive point of this

process, so that Ψ
(1)
0 > 0 ≥ Ψ

(1)
−1 a.s.

Denote by Ψ(−n), n ≥ 0, the stationary ergodic point process that is obtained from
the process Ψ(1) by shifting each point to the left by the random variable

∑0
j=−n σj and

is renumbered so that Ψ
(−n)
0 is its first positive point.

Since Ψ(1) and {ξk}∞k=−∞ are independent, for every n ≥ −1 the process Ψ(−n) is
independent of the sequence {ξk}∞k=−∞ and its distribution coincides with the distribution
of Ψ(1).

The service policies. If the server, on visiting station k at time j, finds x cus-
tomers in a queue, then it serves, without interruption, f j

k(x) ≡ fk(x,D
j
k) ≤ x cus-

tomers in the FIFO order, and then moves to the next station of the route. Upon
service completion, customers leave the system. Here (for every k) the random variables
Dj

k, j = 0,±1,±2, . . ., are i.i.d. Suppose that the service policies satisfy the conditions
P(f j

k(1) = 1) = δk > 0 and f j
k(x) ≤ x a.s. for all x ∈ Z+, k = 1, . . . , K, and belong to

the class M = {f : f(x, y) ≤ f(x + 1, y) ≤ f(x, y) + 1 for all x ∈ Z+, y ∈ R}. We call
the class M the class of monotone service policies. For the service policies in M , there
always exists a (finite or infinite) limit

Fk = E lim
x→∞

fk(x,D
j
k) = EFk(D

j
k) ≤ ∞.

Henceforth the number [m,n] and the arguments Ψ and T = {Tk} in some character-
istic of the system (queue length, exhaustion time, etc.) signify that the characteristic is
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considered in the system that is governed by the route Ψ of the server and to which only the
customers with numbers m ≤ . . . ≤ n are submitted at respective times Tm ≤ . . . ≤ Tn.
By a nonempty cycle we mean a cycle during which there are customers in the system.

Denote by X[m,n] = X[m,n](T,Ψ) and X̃[−k,l] = X[−k,l](T,Ψ
(−k)) the finish times of the

last nonempty cycles in the corresponding systems.
Given two systems of the above-described type with (possibly) different arrival times

of customers and the service policies, we shall write T ≤ T ′ a.s., provided that Tn ≤ T ′n
a.s. for all n, and write f ≥ f ′ a.s., provided that f j

k(x) ≥ f ′jk(x) a.s. for all k = 1, 2 . . .,
j = 1, 2, . . .; x ∈ Z+.

The above objects enjoy the monotonicity property:
If T ≤ T ′ and f ≥ f ′ a.s. then

X[m,n](T ) ≤ X[m,n](T
′), X̃[−k,l](T ) ≤ X̃[−k,l](T

′).

Introduce the following notations:

Z[m,n](T ) = X[m,n](T )− Tn, Z̃[−n,m](T ) = X̃[−n,m](T )− Tm,

X1(T ) = X[1,1](T ), Z1(T ) = Z[1,1](T ).

Assume the following condition to be satisfied:
(A1) EX1(T ) <∞.
The condition (A1) is always valid for systems with finite number of stations.
Under condition (A1), we have

Lemma 1 (Law of Large Numbers). There exists a finite constant γ ≥ 0 such that

Z[1,n]

n

p→ γ, lim
n→∞

EZ[1,n]

n
= γ;

Z[−n,−1]

n

p→ γ, lim
n→∞

EZ[−n,−1]

n
= γ.

Given an arbitrary 0 ≤ c < ∞, denote by cT the process that consists of the points
{cTi}, i ∈ Z, and the marks (cτi, µi, σi). The monotonicity property and (A1) imply

Lemma 2 . For every c ≥ 0, there exists a nonnegative constant γ(c) such that

Z[1,n](cT )

n

p→ γ(c);

moreover, γ(c) decreases in c, whereas γ(c) + cλ−1 increases in c.

Denote

γ(0) = lim
c↘0

γ(c) = lim
n

Z[1,n](0 · T )

n
.
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Theorem 1 . 1. γ(0) = σ + supk
pk

FkCk
W .

2. There exists limn X̃[−n,0] in the sense of convergence a.s.

3. The event {limn X̃[−n,0] <∞} has probability 0 or 1.

4. Let condition (A1) hold. If lim X̃[−n,0](T ) = ∞ a.s. then ρ ≡ λγ(0) ≥ 1. If ρ > 1

then lim X̃[−n,0](T ) = ∞ a.s.

For the system governed by the process Ψ(−n), let Qk
[−n,m](t) stand for the queue length

at station k at time t; χk
[−n,m](t), the residual service time at station k at time t; χ0

[−n,m](t),
the residual interarrival time; η[−n,m](t), the cycle of the route in which the server is at
time t (the random vector composed of the numbers of stations and the walking times
between them); and ϕ[−n,m](t), the residual (total) walking time of the server in the cycle
η[−n,m](t).

Set the corresponding quantities equal to zero if their values at time t are not defined.
All above characteristics are assumed right continuous. Put

Y[−n,m] = {{Qk
[−n,m](t)}

∞
k=1, {χ

k
[−n,m](t)}

∞
k=0, η[−n,m](t), ϕ[−n,m](t), 0 ≤ t ≤ Tm}.

Given random variables X and Y on the probability space 〈Ω,F , P 〉, we call X a copy
of Y if there exits a one-to-one measure-preserving F -measurable shift transformation θ
on Ω such that X(ω) = Y (θω) for all ω.

We say that the process X̆(t) is Palm-stationary (with respect to the nested times
{Tn}, where T0 = 0) if for every n the process {X̆n(t) = X̆(t + Tn), t ≥ 0} is a copy of
the process {X̆(t), t ≥ 0}.

For the process {X̆(t), ∞ ≤ t ≤ ∞} and for any m = 1, 2, . . ., put Y̆ m = {X̆(t), 0 ≤
t ≤ Tm}.

Denote by Qk
n = Qk

[1,n](Tn) the queue length at station k at time Tn in the polling

system governed by the process Ψ, set ~Qn = {Qk
n; k = 1, 2, . . .}. Let Qn =

∑∞
k=1Q

k
n stand

for the total queue length.

Theorem 2 . Assume that condition (A1) holds.
1. If ρ < 1 then, on the probability space 〈Ω,F , P 〉, there exists a Palm-stationary

process {X̆(t), ∞ ≤ t ≤ ∞} such that for every m = 1, 2, . . . there is a sequence {Y̆ n,m}∞n=1

of copies of the process Y̆ m for which

P(Y[−n,m] 6= Y̆ n,m) → 0 as n →∞.

In particular, there exists s stationary sequence { ~Q(n);∞ < n <∞} such that

P( ~Qn = ~Q(n)) → 1

as n→∞.
2. If ρ > 1 then there exists k <∞ such that

∑k
j=1Q

j
n →∞ a.s. as n→∞.

Remark 1. It is noteworthy that the existence of the Palm version of a station-
ary process implies the existence of a stationary process in continuous time (and vice
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versa) and some formulas are known that connect the distributions of these marked point
processes (see, for instance, [14]).

Remark 2. Extend the class of the service policies under consideration as follows:
Let B̂ = {f : for every y there is limx→∞ f(x, y) = F (y) ≤ ∞} and B = {f : for every y
there is limx→∞ f(x, y) = F (y) ≤ ∞, f(x, y) ≤ F (y) for all y ∈ R, x ∈ Z+}.

It is easy to see that M ⊂ B ⊂ B̂. For the service policies in the class B̂, there exists

Fk = E lim
x→∞

fk(x,D
j
k) = EFk(D

j
k) ≤ ∞.

Theorem 3 Consider a system with service policies in the class B̂. If ρ < 1 then Qn

is bounded in probability; i.e.,

lim
x→∞

sup
n

P(Qn > x) = 0.

Theorem 4 Consider a system with policies in the class B. If ρ > 1 then there exists
k <∞ such that

∑k
j=1Q

j
n

p→∞ as n→∞.

The claim of Theorem 4 fails (in general) for systems with policies in the class B̂.

§2. Systems with a Single Server: “Local” Stability

Consider a model with K < ∞ stations. Assume that ρ > 1, i.e. the “global” system is
unstable. The problem is: do some stable station still exist? We give a positive answer on
this question, but under slightly more restrictive assumptions on distributions of driving
sequences.

Assume that service time at each station k form a stationary ergodic sequence {σn(k)}
with finite mean σ(k), all these sequences are mutually independent and do not depend
on the sequence {(τn, µn)}. Put ak = pk

FkCk
≥ 0 and permit stations in such an order that

a1 ≤ a2 ≤ . . . ≤ aK .

For k = 1, . . . , K, set

ρk = λ(
k∑

j=1

σ(j)pj + ak(W +
K∑

j=k+1

σjpjFjCj))

(here 0×∞ = 0). Note that ρk ≤ ρk+1 for all k, and ρK = ρ.

Theorem 5 If ρk < 1 for some k = 1, . . . , K, then there exists a stationary k-
dimensional sequence { ~Q(n)(k)} such that

P((Q1
n, . . . , Q

k
n) = ~Q(n)(k)) → 1

as n→∞.

Under assumption (A1), a similar result takes place for systems with infinite number
of stations. One can formulate natural analogs of Theorem 1-4 also.
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§3. Systems with Finite Number of Stations and with

Several Servers

Consider a model with K < ∞ stations. Assume that interarrival times {τn} form an
i.i.d. sequence with mean λ−1, each customer (independently of everything else) is sent
to station k = 1, . . . , K with probability pk. Each server has its own regenerative routing
mechanism and service policies. All service policies are assumed to be limited: F

(m)
k <∞

for any server m and for any station k. Within one cycle, a server m visits any station
k a random number of times with finite mean C

(m)
k , and its mean cycle walking time is

W (m).

Theorem 6 Assume interarrival times to have an unbounded distribution. Then the
model is stable if and only if ρ̃ < 1.

The “unboundedness” assumption may be weakened variously. Here ρ̃ = λ
∑R

r=1 β
(r), and

R and β(r), r = 1, . . . , R are defined by the following recursive procedure.
For 1 ≤ i, j ≤ K, 1 ≤ m ≤M , put

ϕi,j =
M∑

m=1

F
(m)
i C

(m)
i

W (m) +
∑j

1 σ
(j)
k F

(j)
k C

(j)
k

.

Set

p
(1)
i = pi;ϕ

(i)
1 = ϕi,K ;α

(1)
i =

p
(1)
i

ϕ
(1)
i

; β(1) = min
1≤i≤K

α
(1)
i .

Take K(1) = K. Assume that, for some k ≥ 1, we have previously defined K(1) >
K(2) > . . . > K(r) ≥ 1 and, for 1 ≤ k ≤ r, 1 ≤ i ≤ K(k), we know the values of

p
(k)
i , ϕ

(k)
i , α

(k)
i and β(k) = mini α

(k)
i .

Permit a sequence {1, 2, . . . , K(r)} in such a way that (after permutation)

α
(r)
1 ≥ α

(r)
2 ≥ . . . ≥ α

(r)
K(r).

If α
(r)
1 = α

(r)
K(r), then stop with the procedure and put R = r. Otherwise, set

K(r + 1) = max{l : α
(r)
l > α

(r)
l+1}

and, for any 1 ≤ i ≤ K(r + 1), put

p
(r+1)
i = ϕ

(r)
i (α

(r)
i − α

(r)
K(r));ϕ

(r+1)
i = ϕi,K(r+1);

α
(r+1)
i =

p
(r+1)
i

ϕ
(r+1)
i

; β(r+1) = min
i
α

(r+1)
i .
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