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Abstract. In this paper, the asymptotic behaviour of the distribution tail of the station-
ary waiting time W in the GI/GI/2 FCFS queue is studied. Under subexponential-type
assumptions on the service time distribution, bounds and sharp asymptotics are given
for the probability P{W > x}. We also get asymptotics for the distribution tail of a
stationary two-dimensional workload vector and of a stationary queue length. These
asymptotics depend heavily on the traffic load.

Keywords: FCFS multi-server queue, stationary waiting time, large deviations, long
tailed distribution, subexponential distribution.

1. Introduction

It is well known (see, for example, [15, 18, 1]) that in the stable single server
first-come-first-served queue GI/GI/1 with typical interarrival time τ and typical
service time σ the tail of stationary waiting time W is related to the service time
distribution tail B(x) = P{σ > x} via the equivalence

P{W > x} ∼ 1
Eτ −Eσ

∫ ∞

x
B(y) dy as x →∞, (1)

provided the subexponentiality of the integrated tail distribution BI defined by its
tail

BI(x) ≡ min
(
1,

∫ ∞

x
B(y) dy

)
, x > 0.

As usual we say that a distribution G on R+ is subexponential (belongs to the
class S ) if G ∗G(x) ∼ 2G(x) as x → ∞. The converse assertion is also true,
that is, the equivalence (1) implies the subexponentiality of BI , see [15, Theorem
1] for the case of Poisson arrival stream and [14, Theorem 1] for the general case.

In this paper we consider the GI/GI/s FCFS queue which goes back to Kiefer
and Wolfowitz [13]. We have s identical servers, i.i.d. interarrival times {τn} with
finite mean a = Eτ1, and i.i.d. service times {σn} with finite mean b = Eσ1. The
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sequences {τn} and {σn} are mutually independent. The system is assumed to be
stable, i.e., ρ ≡ b/a ∈ (0, s). We are interested in the asymptotic tail behaviour
of the stationary waiting time distribution P{W > x} as x →∞.

It was realized recently (see, for example, existence results for moments in
[16], [17]; an asymptotic hypothesis in [19]; asymptotic results for fluid queues
fed by heavy-tailed on-off flows in [5]) that the heaviness of the stationary waiting
time tail depends substantially on the load ρ in the system. More precisely, it
depends on ρ via the value of k ∈ {0, 1, . . . , s − 1} for which k ≤ ρ < k + 1. In
particular, Whitt conjectured that

P{W > x} ∼ γ

(∫ ∞

ηx
B(y)dy

)s−k

as x →∞,

“where γ and η are positive constants (as functions of x)” [sic, [19]]. In the present
paper we show that, in general, the tail behaviour of W is more complicated.

Let R(w) = (R1(w), . . . , Rs(w)) be the operator on Rs which orders the
coordinates of w ∈ Rs in ascending order, i.e., R1(w) ≤ · · · ≤ Rs(w). Then the
residual work vector Wn = (Wn1, . . . , Wns) which the nth customer observes just
upon its arrival satisfies the celebrated Kiefer–Wolfowitz recursion: W1 = i · 0,

Wn+1 = R((Wn1 + σn − τn+1)+, (Wn2 − τn+1)+, . . . , (Wns − τn+1)+)
= R(Wn + e1σn − iτn+1)+,

here e1 = (1, 0, . . . , 0), i = (1, . . . , 1) and w+ = (max(0, w1), . . . , max(0, ws)).
The value of Wn1 is the delay which customer n experiences. In particular, the
stationary waiting time W is a weak limit for Wn1.

The process Wn is a Markov chain in Rs. It is well known that, for general
multi-dimensional Markov chains, large deviation problems are very difficult to
solve even for stationary distributions. Usually they can be solved in low dimen-
sions only, 2 or 3 at most, see [12, 4]. Almost all known results are derived for
so-called Cramér case which corresponds to light-tailed distributions of jumps.
In the heavy-tailed case almost nothing is known for general multi-dimensional
Markov chains.

The process Wn presents a particular but very important example of a Markov
chain in Rs, even if we are interested in the first component Wn1. As follows from
our analysis, the case s = 2 can be treated in detail. The stability condition for
this particular case is b < 2a. One of the following cases can occur:

(i) the maximal stability case when b < a;
(ii) the intermediate case when b = a;
(iii) the minimal stability case when b ∈ (a, 2a).
We find the exact asymptotics for P{W > x} in the maximal and minimal

cases. We also describe the most probable way for the occurrence of large de-
viations. In the intermediate case, we only provide upper and lower bounds.
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Then we study the asymptotics for the tail of the distribution of a stationary
two-dimensional workload vector and give comments on the tail asymptotics of
the stationary queue length.

For s > 2, the stability condition is b < sa. We hope that, for s > 2, direct
modifications of our arguments may lead to exact asymptotics in two particular
cases when either b < a (the maximal stability) or b ∈ ((s−1)a, sa) (the minimal
stability). However, one has to overcome many extra technicalities for that.
Insofar as the case b ∈ [a, (s − 1)a] is concerned, we are extremely sceptical on
the possibility to get any sharp tail asymptotics in explicit form.

For the two-server queue, in the maximal stability case, we prove the following:

Theorem 1. Let s = 2 and b < a. When the integrated tail distribution BI

is subexponential, the tail of the stationary waiting time satisfies the asymptotic
relation, as x →∞,

P{W > x} ∼ 1
a(2a− b)

[
(BI(x))2 + b

∫ ∞

0
BI(x + ya)B(x + y(a− b))dy

]
.

The proof follows by combining the lower bound given in Theorem 3 (Section
3) and the upper bound given in Theorem 4 (Section 4). Simpler lower and upper
bounds for P{W > x} are given in the following

Corollary 1. Under the conditions of Theorem 1,

2a + b

2a2(2a− b)
≤ lim inf

x→∞
P{W > x}
(BI(x))2

≤ lim sup
x→∞

P{W > x}
(BI(x))2

≤ 1
2a(a− b)

.

In our opinion, in Theorem 1 it is possible to obtain a compact expression
for the tail asymptotics of P(W > x) only in the regularly varying case. A
distribution G (or its tail G) is regularly varying at infinity with index γ > 0
(belongs to the class RV ), if G(x) > 0 for all x and, for any fixed c > 0,
G(cx)/G(x) → c−γ as x →∞.

Corollary 2. Let b < a and the tail distribution B of service time be regularly
varying with index γ > 1. Then

P{W > x} ∼ c′(BI(x))2,

where

c′ =
1

a(2a− b)

[
1 +

b

γ − 1

∫ ∞

0

dz

(1 + za)γ−1(1 + z(a− b))γ

]
.
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Recall definitions of a number of classes of heavy-tailed distributions. A
distribution G is long-tailed (belongs to the class L ) if G(x) > 0 for all x and,
for any fixed t,

G(x + t)
G(x)

→ 1 as x →∞.

A distribution G belongs to the class I RV of intermediate regularly varying
distributions if G(x) > 0 for all x and

lim
c↓1

lim inf
x→∞

G(cx)
G(x)

= 1.

Clearly, RV ⊂ I RV .
In the minimal stability case, we prove the following

Theorem 2. Let s = 2 and a < b < 2a, B ∈ S and BI ∈ I RV . Then

P{W > x} ∼ 1
2a− b

BI

( b

b− a
x
)

as x →∞.

The proof is given in Section 7 and is based on the lower and upper bounds
stated in Theorems 5 and 6 respectively.

One can provide simple sufficient conditions for B ∈ S and BI ∈ I RV . Let
D be the class of all distributions G on R+ such that G(x) > 0 for all x and
lim infx→∞G(2x)/G(x) > 0. Then the following are known: (i) RV ⊂ I RV ⊂
(L

⋂
D) ⊂ S ; (ii) if B ∈ D has a finite first moment, then BI ∈ I RV (see e.g.

[6]). Therefore, if B ∈ L
⋂

D and has a finite first moment, then B satisfies the
conditions of Theorem 2. Note that the converse is not true, in general: there
exists a distribution B ∈ S with a finite first moment such that BI ∈ I RV ,
but B /∈ L

⋂
D (see Example 2 in [9, Section 6]).

The paper is organized as follows. Section 2 contains some auxiliary re-
sults. In Section 3, we formulate and prove a result concerning a lower bound
for P{W > x} in the maximal stability case. The corresponding upper bound
is given in Section 4. Sections 5, 6, and 7 deal, respectively, with lower bounds,
upper bounds, and asymptotics for P{W > x} in the minimal stability case. In
Section 8, we prove further results related to the joint distribution of a stationary
workload vector. Comments on the asymptotics for a stationary queue length
distribution may be found in Section 9.

A number of upper and lower bounds for P{W > x} in s-server queue are
proposed in Remarks 2, 3, 4, and 5.
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2. Preliminaries

2.1. Reduction to deterministic input stream case in assertions asso-
ciated with upper bounds. Consider a general GI/GI/s queue. Take any
a′ ∈ (b/s, a). Consider an auxiliary D/GI/s system with the same service times
{σn} and deterministic interarrival times τ ′n ≡ a′: W ′

1 = 0 and

W ′
n+1 = R(W ′

n + e1σn − ia′)+.

Let W ′ be a stationary waiting time in this auxiliary system.

Lemma 1. If P{W ′ > x} ≤ G(x) for some long-tailed distribution G, then

lim sup
x→∞

P{W > x}
G(x)

≤ 1.

P r o o f. Denote ξn = a′ − τn. Put M0 = 0 and, for n ≥ 1,

Mn = max{0, ξn, ξn + ξn−1, . . . , ξn + · · ·+ ξ1}
= max(0, ξn + Mn−1) = (ξn + Mn−1)+.

First, we use induction to prove the inequality

Wn ≤ W ′
n + iMn a.s. (2)

Indeed, for n = 1 we have 0 ≤ 0+ iM1. Assume the inequality is proved for some
n; we prove it for n + 1. Indeed,

Wn+1 = R(Wn + e1σn − iτn+1)+

≤ R(W ′
n + iMn + e1σn − iτn+1)+

= R(W ′
n + e1σn − ia′ + i(Mn + ξn+1))+.

Since (u + v)+ ≤ u+ + v+,

Wn+1 ≤ R(W ′
n + e1σn − ia′)+ + i(Mn + ξn+1)+ ≡ W ′

n+1 + iMn+1,

and the proof of (2) is complete.
Let M be the weak limit for Mn which exists due to Eξ1 = a′ − a < 0 and

Strong Law of Large Numbers. The following stochastic equality holds:

M =st max{0, ξ1, ξ1 + ξ2, . . . , ξ1 + · · ·+ ξn, . . .}.
Since the random variable ξ1 is bounded from above (by a′), there exists β > 0
such that Eeβξ1 = 1. Then by Cramér estimate (see, for example, [8, Section 5]),
for any x,

P{M > x} ≤ e−βx. (3)
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The inequality (2) implies that W ≤st W ′+M , where W ′ and M are independent.
Let a random variable η have distribution G and be independent of M . Since
η ≥st W ′, we have W ≤st η + M . Therefore, for any h > 0,

P{W > x} ≤
∫ x−h

0
P{M > x− y}P{η ∈ dy}+ P{η > x− h}

≤
∫ x−h

0
e−β(x−y)G(dy) + G(x− h),

by (3). Integrating by parts yields

∫ x−h

0
e−β(x−y)G(dy) = −e−β(x−y)G(y)

∣∣∣
x−h

0
+ β

∫ x−h

0
G(y)e−β(x−y)dy

≤ e−βx + β

∫ x

h
G(x− y)e−βydy.

The distribution G is long-tailed, thus, for any ε > 0 there exists x(ε) such that

G(x− 1) ≤ G(x)eε

for any x ≥ x(ε). Hence, there exists c(ε) < ∞ such that

G(x− y) ≤ c(ε)G(x)eεy

for any x ≥ x(ε). Take ε = β/2. Then

∫ x

h
G(x− y)e−βydy ≤ c(ε)G(x)

∫ x

h
e−βy/2dy ≤ c(ε)

β/2
G(x)e−βh/2.

Hence,

P{W > x} ≤ e−βx + 2c(ε)G(x)e−βh/2 + G(x− h).

Taking into account also that G(x− h) ∼ G(x) for any fixed h > 0, we obtain

lim sup
x→∞

P{W > x}
G(x)

≤ 2c(ε)e−βh/2 + 1.

Letting h →∞ yields the conclusion of the Lemma.
2.2. Reduction to deterministic input stream case in assertions as-

sociated with lower bounds. Take any a′ > a. As in the previous subsection,
consider an auxiliary D/GI/s system with the same service times {σn} and de-
terministic interarrival times τ ′n ≡ a′. Let W ′ be a stationary waiting time in this
auxiliary system.
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Lemma 2. If P{W ′ > x} ≥ G(x) for some long-tailed distribution G, then

lim inf
x→∞

P{W > x}
G(x)

≥ 1.

P r o o f. Put ξn = τn − a′, M0 = 0 and

Mn = max{0, ξn, ξn + ξn−1, . . . , ξn + · · ·+ ξ1} = (Mn−1 + ξn)+.

For any n ≥ 1, the following inequality holds:

Wn ≥ W ′
n − iMn. (4)

Indeed, by induction arguments,

Wn+1 = R(Wn + e1σn − iτn+1)+

≥ R(W ′
n − iMn + e1σn − iτn+1)+

= R(W ′
n + e1σn − ia′ − i(Mn + ξn+1))+.

Since (u− v)+ ≥ u+ − v+,

Wn+1 ≥ R(W ′
n + e1σn − ia′)+ − i(Mn + ξn+1)+ ≡ W ′

n+1 − iMn+1,

and the proof of (4) is complete.
Let M be the weak limit for Mn which exists due to Eξ1 = a−a′ < 0 and the

Strong Law of Large Numbers. The inequality (4) implies that W ≥st W ′ −M
where W ′ and M are independent. Therefore, for any h > 0,

P{W > x} ≥ P{W ′ > x + h}P{M ≤ h} ≥ G(x + h)P{M ≤ h}.

The distribution G is long-tailed, thus G(x + h) ∼ G(x) for any fixed h > 0 and

lim inf
x→∞

P{W > x}
G(x)

≥ P{M ≤ h}.

Letting h →∞, we obtain the desired estimate from below.
2.3. Adapted versions of the Law of Large Numbers. It is well known

that obtaining lower bounds for systems under assumptions of heavy tails usually
requires some variant of the Law of Large Numbers. Here we provide such a tool
for the two-server queue.

Lemma 3. Let (ξn, ηn), n = 1, 2, . . . , be independent identically distributed
pairs of random variables. Let the two-dimensional Markov chain Vn = (Vn1, Vn2),
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n = 1, 2, . . . , be defined in the following way: V1 has an arbitrary distribution
and

Vn+1 =

{
Vn + (ξn, ηn), if Vn1 ≤ Vn2,
Vn + (ηn, ξn), if Vn1 > Vn2.

If Eη1 < Eξ1, then the following convergence in probability holds:

Vn

n
→

(Eξ1 + Eη1

2
,

Eξ1 + Eη1

2

)
as n →∞.

P r o o f. Since Vn+1,1 + Vn+1,2 = Vn1 + Vn2 + ξn + ηn, by the Law of Large
Numbers

Vn1 + Vn2

n
→ Eξ1 + Eη1 as n →∞. (5)

Define a Markov chain Un = Vn2−Vn1. If Un ≥ 0, then Un+1−Un = ηn− ξn,
while if Un < 0, then Un+1−Un = ξn− ηn = −(ηn− ξn), so, Un is the oscillating
random walk. Since Eξ1 > Eη1, the mean drift of the chain Un is negative on
the positive half-line and is positive on the negative half-line. Therefore, for any
sufficiently large A, the set [−A,A] is positive recurrent for this Markov chain.
In particular, the distributions of Un are tight. Hence, Un/n → 0 in probability
as n →∞. Together with (5), it implies the desired assertion of Lemma.

The classical Law of Large Numbers and Lemma 3 imply the following

Corollary 3. Let Eη1 < Eξ1 < 0 and ε > 0. Then

P{Vn1 > 0, Vn2 > 0 |V1 = (v1, v2)} → 1

as N →∞ uniformly in n ≥ N and in (v1, v2) on the set
{
v1, v2 > n(|Eξ1|+ ε), v1 + v2 > n(|Eξ1|+ |Eη1|+ ε)

}
.

Corollary 4. Let Eη1 < Eξ1 < 0 and ε > 0. Then

P{Vn1 > 0, Vn2 > 0 |V1 = (v1, v2)} → 0

as N →∞ uniformly in n ≥ N and in (v1, v2) on the complementary set

{v1 > n(|Eξ1| − ε), v2 > n(|Eξ1| − ε), v1 + v2 > n(|Eξ1|+ |Eη1| − ε)}.
Corollary 5. Let Eη1 < 0, Eξ1 > 0, Eη1 + Eξ1 < 0 and ε > 0. Then

P{Vn1 > x, Vn2 > x |V1 = (v1, v2)} → 1

as x, N →∞ uniformly in n ≥ N and in (v1, v2) on the set
{
v1 > x− n(Eξ1 − ε), v2 > 2x + n(|Eξ1 + Eη1|+ ε)

}
.
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3. The maximal stability case: a lower bound

Theorem 3. Assume b ∈ (0, a). Let the integrated service time distribution
BI be long-tailed. Then the tail of the stationary waiting time W admits the
following estimate from below: as x →∞,

P{W > x} ≥ 1 + o(1)
a(2a− b)

[
(BI(x))2 + b

∫ ∞

0
BI(x + ya)B(x + y(a− b))dy

]
. (6)

R e m a r k 1. From (6), one can get the lower bound in Corollary 1. Namely,
replace B(x+y(a− b)) by a smaller term B(x+ya) in the integral in the RHS of
(6). Then the new integral is equal to b(BI(x))2/2a, and the lower bound follows
since

1
a(2a− b)

(
1 +

b

2a

)
=

2a + b

2a2(2a− b)
.

Re m a r k 2. By use of Strong Law of Large Numbers, one can get the following
result for s-server queue, s ≥ 2. If b < a, then there exists a constant K ≡
K(a, b, s) such that

P{W > x} ≥ (K + o(1))(BI(x))s.

We start with some auxiliary results. The proof of the theorem is given in
subsection 3.4.

3.1. An integral equality.

Lemma 4. Let f(y) be an integrable function. Put fI(y) ≡ ∫∞
y f(z)dz.

Then, for any positive α and β, α > β,

J ≡
∫ ∞

0

∫ ∞

0
f(αy+βz)f(βy+αz)dydz

=
(fI(0))2

α2−β2
− 2β

α2−β2

∫ ∞

0
fI(αu)f(βu)du.

P r o o f. Put u = αy+βz and v = βy+αz. Then

J =
1

α2−β2

∫ ∞

0
f(u)du

∫ αu/β

βu/α
f(v)dv

=
1

α2−β2

∫ ∞

0
f(u)fI(βu/α)du− 1

α2−β2

∫ ∞

0
f(u)fI(αu/β)du

=
α

α2−β2

∫ ∞

0
f(αu)fI(βu)du− β

α2−β2

∫ ∞

0
f(βu)fI(αu)du.

Integration by parts yields
∫ ∞

0
fI(βu)f(αu)du =

(fI(0))2

α
− β

α

∫ ∞

0
fI(αu)f(βu)du.
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By substituting this equality into the previous one, we arrive at the conclusion
of the Lemma.

3.2. Some calculations with two big service times. Fix ε > 0 and
put b′ = b − ε. For k and l, k < l ≤ n, define the events Ankl and Cnkl by the
equalities

Ankl =
{
σk > x + (l − k)a + (n− l)(a− b′), σl > x + (n− l)(a− b′),

σk + σl > 2x + (l − k)a + (n− l)(2a− b′)
}

and

Cnkl =
n⋂

j=1

j 6=k,l

{
σj ≤ x + (n− j)(a− b′)

}
.

Note that the events Ankl ∩Cnkl are disjoint for different pairs (k, l). Due to the
existence of Eσ, uniformly in n ≥ 1 and k < l ≤ n,

P{Cnkl} ≤
∞∑

j=0

P{σ1 > x + j(a− b′)} → 0 as x →∞. (7)

Lemma 5. Assume b ∈ (0, a). Let the integrated tail distribution BI be long-
tailed. Then, for any fixed N ≥ 1 and for any ε > 0, as x →∞,

lim
n→∞

n−N∑

k,l=1

k<l

P{Ankl} ∼ 1
a(2a− b′)

[
(BI(x))2 + b′

∫ ∞

0
BI(x + ya)B(x + y(a− b′))dy

]
.

P r o o f. Put

A′kl = {σ1 > x + ka + l(a−b′), σ2 > x + l(a−b′), σ1 + σ2 > 2x + ka + l(2a−b′)},
so that P{Ankl} = P{A′l−k,n−l} and

lim
n→∞

n−N∑

k,l=1

k<l

P{Ankl} = lim
n→∞

n−1∑

l=N

n−l−1∑

k=1

P{A′kl} =
∞∑

l=N

∞∑

k=1

P{A′kl}. (8)

Consider also the events

A(y, z) = {σ1 > x+ya+z(a−b′), σ2 > x+z(a−b′), σ1+σ2 > 2x+ya+z(2a−b′)},
which satisfy A(k, l) = A′kl. Since the probability P{A(y, z)} is non-increasing in
y and z, we have the inequalities

I− ≡
∫ ∞

N

∫ ∞

1
P{A(y, z)}dydz ≤

∞∑

l=N

∞∑

k=1

P{A′kl}

≤
∫ ∞

0

∫ ∞

0
P{A(y, z)}dydz ≡ I+. (9)
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The values of integrals I− and I+ are close to each other in the following sense:

I+ − I−

≤
∫ N

0

∫ ∞

0
P{A(y, z)}dydz +

∫ ∞

0

∫ 1

0
P{A(y, z)}dydz

≤ NP{σ2 > x}
∫ ∞

0
P{σ1 > x + ya}dy + P{σ1 > x}

∫ ∞

0
P{σ1 > x + z(a−b′)}dz.

Recall that the distribution BI(x) is long tailed, which is equivalent to B(x) =
o(BI(x)). Therefore, as x →∞,

I+ − I− ≤ N + 1
a− b′

B(x)BI(x) = o((BI(x))2).

Now it follows from (9) that, as x →∞,

∞∑

l=N

∞∑

k=1

P{A′kl} =
∫ ∞

0

∫ ∞

0
P{A(y, z)}dydz + o((BI(x))2). (10)

Further,

P{A(y, z)}
= B(x + ya + za)B(x + z(a− b′))

+ P
{
x + ya + z(a− b′) < σ1 ≤ x + ya + za, σ2 > x + z(a− b′),

σ1 + σ2 > 2x + ya + z(2a− b′)
}

= B(x + ya + za)B(x + z(a− b′))

+ P
{
x + ya + z(a−b′) < σ1 ≤ x + ya + za, σ1 + σ2 > 2x + ya + z(2a−b′)

}

≡ B(x + ya + za)B(x + z(a− b′)) + Q(y, z),

since the event {σ1 ≤ x + ya + za, σ1 + σ2 > 2x + ya + z(2a − b′)} implies the
event {σ2 > x + z(a′ − b)}. Consequently integrating over y and z, we obtain

∫ ∞

0

∫ ∞

0
B(x+ya+za)B(x+z(a−b′))dydz =

1
a

∫ ∞

0
BI(x+za)B(x+z(a−b′))dz.

By the total probability formula,

Q(y, z) =
∫ zb′

0
P{σ1 ∈ x + ya + z(a−b′) + dt}P{σ2 > x + za− t}

=
∫ zb′

0
B(x + za− t)B(x + ya + z(a−b′) + dt).
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The integration against y leads to the equalities
∫ ∞

0
Q(y, z)dy =

1
a

∫ zb′

0
B(x + za− t)BI(x + z(a− b′) + dt)

=
1
a

∫ zb′

0
B(x + za− t)B(x + z(a− b′) + t)dt

=
b′

a

∫ z

0
B(x + za− tb′)B(x + z(a− b′) + tb′)dt.

Integrating against z, we obtain:
∫ ∞

0

∫ ∞

0
Q(y, z)dydz =

b′

a

∫ ∞

0

∫ z

0
B(x + za− tb′)B(x + z(a− b′) + tb′)dtdz

=
b′

a

∫ ∞

0

∫ ∞

t
B(x + za− tb′)B(x + z(a− b′) + tb′)dzdt

=
b′

a

∫ ∞

0

∫ ∞

0
B(x + za + t(a−b′))B(x + z(a−b′) + ta)dzdt.

By Lemma 4 with f(y) = B(x + y), α = a, and β = a− b′, the latter integral is
equal to

1
a(2a− b′)

(BI(x))2 − 2(a− b′)
a(2a− b′)

∫ ∞

0
BI(x + ya)B(x + y(a− b′))dy.

Putting everything together into (10), we obtain the following equivalence, as
x →∞:

∞∑

l=1

∞∑

k=1

P{A′kl} ∼
1

a(2a− b′)
(BI(x))2

+
b′

a(2a− b′)

∫ ∞

0
BI(x + ya)B(x + y(a− b′))dy,

which due to (8) completes the proof of Lemma.
3.3. Proof of Theorem 3. If BI(x) is long-tailed, then the function in x

(BI(x))2 + b

∫ ∞

0
BI(x + ya)B(x + y(a− b))dy

is long-tailed as well. Indeed, for any fixed t, we have, as x →∞,
∫ ∞

0
BI(x+t+ya)B(x+t+y(a−b))dy ∼

∫ ∞

0
BI(x+ya)B(x+t+y(a−b))dy.

Integrating by parts we get the equality for RHS integral

− 1
a− b

BI(x+ya)BI(x+t+y(a−b))
∣∣∣
∞
0
−

∫ ∞

0
B(x+ya)BI(x+t+y(a−b))dy

∼ 1
a− b

(BI(x))2 −
∫ ∞

0
B(x+ya)BI(x+y(a−b))dy

=
∫ ∞

0
BI(x+ya)B(x+y(a−b))dy.
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So, we can apply Lemma 2, and it is sufficient to prove the lower bound of
Theorem 3 for the queueing system D/GI/2 with deterministic input stream.
Let the interarrival times τn be deterministic, i.e., τn ≡ a. Then the event Ankl

implies the event
{
Wk+1,2 > x + (l−k)a + (n−l)(a−b′)− a, Wl+1,1 > x + (n−l)(a−b′)− a,

Wl+1,1 + Wk+1,2 > 2x + (l−k)a + (n−l)(2a−b′)− 2a
}
,

which implies
{
Wl+1,2,Wl+1,1 > x + (n−l)(a−b′)−a, Wl+1,1+Wl+1,2 > 2x + (n−l)(2a−b′)−2a

}
.

Thus, by Corollary 3 (with ξ = σ − τ and η = −τ), there exists N such that

P{Wn > x | Ankl} ≥ 1− ε (11)

for any n > N and k < l < n−N .
Taking into account that the events Ankl ∩Cnkl are disjoint for distinct pairs

(k, l), we obtain the following estimates:

P{Wn > x} ≥
n−N∑

k=1

n−N∑

l=k+1

P{Wn > x, Ankl, Cnkl}

≥
n−N∑

k=1

n−N∑

l=k+1

P{Wn > x, Ankl} −
n−N∑

k=1

n−N∑

l=k+1

P{Ankl, Cnkl}.

Since the events Ankl and Cnkl are independent,

P{Wn > x} ≥
n−N∑

k=1

n−N∑

l=k+1

P{Wn > x, Ankl} − sup
kl

P{Cnkl}
n−N∑

k=1

n−N∑

l=k+1

P{Ankl}

=
n−N∑

k=1

n−N∑

l=k+1

P{Wn > x | Ankl}P{Ankl} − o(1)
n−N∑

k=1

n−N∑

l=k+1

P{Ankl}

as x → ∞ uniformly in n, by (7). Together with (11) it implies that, for suffi-
ciently large x and n > N ,

P{Wn > x} ≥ (1− 2ε)
n−N∑

k=1

n−N∑

l=k+1

P{Ankl}.

Letting now n →∞, we derive from Lemma 5 the following lower bound, for all
sufficiently large x:

P{W > x} ≥ 1− 3ε

a(2a− b′)

[
(BI(x))2 + b′

∫ ∞

0
BI(x + ya)B(x + y(a− b′))dy

]
.
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Note that, for any b′ < b < a,
∫ ∞

0
BI(x + ya)B(x + y(a− b′))dy ≥ a− b

a− b′

∫ ∞

0
BI(x + ya)B(x + y(a− b))dy.

We complete the proof of the Theorem by letting ε ↓ 0.

4. The maximal stability case: an upper bound

Theorem 4. Assume b ∈ (0, a). Suppose that the distribution BI is subexpo-
nential. Then, as x →∞,

P{W > x} ≤ 1+o(1)
a(2a−b)

[
(BI(x))2 + b

∫ ∞

0
BI(x+ya)B(x+y(a−b))dy

]
.

By Lemma 1, it is sufficient to prove this upper bound for the queueing
system D/GI/2 with deterministic input stream. So, let the interarrival times
τn be deterministic, i.e., τn ≡ a. Let σ

(1)
n and σ

(2)
n , n ≥ 1, be independent

random variables with common distribution B. In this Section, define the service
times σn recursively. For that, we have to associate workloads with servers. Put
U1 = (U1,1, U1,2) = (0, 0) and introduce the recursion

Un+1 = (Un + eαnσn − ia)+ (12)

where αn = 1 if Un,1 < Un,2 and αn = 2 if Un,1 > Un,2. If Un,1 = Un,2, then αn

takes values 1 and 2 with equal probabilities independently of everything else.
Note that Wn = R(Un) a.s. for any n = 1, 2, . . . .

Now we can define σn by induction. Indeed, α0 is chosen at random from
the set {1, 2}. Put σ0 = σ

(α0)
0 . Then U1 is defined by recursion (12) with

n = 0. Assume that Un is defined for some n > 0. Then αn is defined, too.
Put σn = σ

(αn)
n and determine Un+1 by (12).

Due to the symmetry, for any n,

P{αn = 1} = P{αn = 2} = 1/2. (13)

Consider two auxiliary D/GI/1 queueing systems which work in parallel: at
any time instant Tn = na, n = 1, 2, . . . , one customer arrives in the first queue
and one in the second. Service times in queue i = 1, 2 are equal to σ

(i)
n . Denote

by W
(i)
n , i = 1, 2, the waiting times in the ith queue and put W

(1)
n = W

(2)
n = 0.

Since b < a, both queues are stable. Let W (i) be a stationary waiting time in the
ith queue. By monotonicity, with probability 1,

Wn ≤ min (W (1)
n , W (2)

n ) (14)

for any n ≥ 1. Hence,

W ≤ min {W (1), W (2)}. (15)
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Lemma 6. The waiting times {W (1)
n } and {W (2)

n } are independent.

P r o o f follows from the observation that the input (deterministic) stream and
service times in the first queue do not depend on the input (also deterministic)
stream and service times in the second one.

Provided BI is a subexponential distribution,

P{W (i) > x} ∼ 1
a− b

BI(x) as x →∞. (16)

Then Lemma 6 together with (15) implies the following simple upper bound:

lim sup
x→∞

P{W > x}
(BI(x))2

≤ 1
(a− b)2

. (17)

R e m a r k 3. For a GI/GI/s queue with a < b and subexponential distribution
BI , similar arguments lead to

lim sup
x→∞

P{W > x}
(BI(x))s

≤ 1
(a− b)s

.

Introduce the events, for k < n,

A
(1)
nk = {σ(1)

k > x + (n− k)(a− b)},
A

(2)
nk = {σ(2)

k > x + (n− k)(a− b)}.

Lemma 7 (See also [3, Theorem 5]). Provided the distribution BI is subexponen-
tial, for any fixed N ,

lim sup
n→∞

P
{
W (1)

n > x,
n−N⋂

k=1

A
(1)
nk

}
= o(BI(x)) as x →∞.

P r o o f. For any δ > 0, consider the disjoint events

C
(1)
nk =

{{
σ

(1)
k > x + (n− k)(a− b + δ)

}
∩

n−1⋂

j=1

j 6=k

{
σ

(1)
j ≤ x + (n− j)(a− b)

}}
.

Due to the Law of Large Numbers, there exists M > N such that

P{W (1)
n > x | C(1)

nk } ≥ 1− δ

for any n ≥ M and k ≤ n−M and, by the limit at (7),

P{C(1)
nk } ≥ (1− δ)P{σ(1)

k > x + (n− k)(a− b + δ)}.
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The events C
(1)
nk , k ≤ n−M , are disjoint, hence,

P
{
W (1)

n > x,
n−M⋃

k=1

C
(1)
nk

}
=

n−M∑

k=1

P{W (1)
n > x, C

(1)
nk }

≥ (1− δ)2
n−1∑

k=M

P{σ(1)
k > x + k(a− b + δ))}.

The latter implies the following lower bound:

lim inf
n→∞ P

{
W (1)

n > x,
n−M⋃

k=1

C
(1)
nk

}
≥ (1− δ)2

∞∑

k=M

B(x + k(a− b + δ))

∼ (1− δ)2

a− b + δ
BI(x)

as x → ∞. Since A
(1)
nk ⊇ C

(1)
nk and since M > N and δ > 0 can be chosen

arbitrarily,

lim inf
n→∞ P

{
W (1)

n > x,
n−N⋃

k=1

A
(1)
nk

}
≥ 1 + o(1)

a− b
BI(x) as x →∞.

Together with (16), it implies the assertion of Lemma.
P r o o f of Theorem 4 continued. Estimate (14) and Lemma 6 imply

P
{
Wn > x,

n−N⋂

k=1

A
(1)
nk ∪

n−N⋂

l=1

A
(2)
nl

}
≤ P

{
W (1)

n > x, W (2)
n > x,

n−N⋂

k=1

A
(1)
nk ∪

n−N⋂

l=1

A
(2)
nl

}

≤ P
{
W (1)

n > x,
n−N⋂

k=1

A
(1)
nk

}
P{W (2)

n > x}

+P{W (1)
n > x}P

{
W (2)

n > x,
n−N⋂

l=1

A
(2)
nl

}
.

Applying now Lemma 7 and relation (16), we conclude that, as x →∞,

lim sup
n→∞

P
{
Wn > x,

n−N⋂

k=1

A
(1)
nk ∪

n−N⋂

l=1

A
(2)
nl

}
= o((BI(x))2).

Since

n−N⋂

k=1

A
(1)
nk ∪

n−N⋂

l=1

A
(2)
nl =

n−N⋂

k,l=1

(
A

(1)
nk ∪A

(2)
nl

)
=

n−N⋃

k,l=1

(
A

(1)
nk ∩A

(2)
nl

)
,
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we obtain the equivalent relation, as x →∞,

lim sup
n→∞

P

{
Wn > x,

n−N⋃

k,l=1

(
A

(1)
nk ∩A

(2)
nl

)}
= o((BI(x))2). (18)

Fix ε > 0 and put b′ = b + ε. For any n and k ≤ l ≤ n, define

D
(1)
nk = {σ(1)

k > x + (l − k)a + (n− l)(a− b′)},
D

(2)
nl = {σ(2)

l > x + (n− l)(a− b′)},
Dnkl = {σ(1)

k + σ
(2)
l > 2x + (l − k)a + (n− l)(2a− b′)}.

For any n and l ≤ k ≤ n, define

D
(1)
nk = {σ(1)

k > x + (n− k)(a− b′)},
D

(2)
nl = {σ(2)

l > x + (k − l)a + (n− k)(a− b′)},
Dnkl = {σ(1)

k + σ
(2)
l > 2x + (k − l)a + (n− k)(2a− b′)}.

Denote

Fnkl = D
(1)
nk ∩D

(2)
nl ∩Dnkl.

We can derive an upper bound on the probability of the event {Wn > x} as
follows:

P{Wn > x}

≤ P
{
Wn > x,

n−N⋃

k,l=1

Fnkl

}
+ P

{
Wn > x,

n−N⋃

k,l=1

Fnkl,
n−N⋃

k,l=1

(
A

(1)
nk ∩A

(2)
nl

)}

+P
{
Wn > x,

n−N⋃

k,l=1

(
A

(1)
nk ∩A

(2)
nl

)}

≡ Pn1 + Pn2 + Pn3. (19)

Here the first term is not greater than

Pn1 ≤ P
{
Wn > x,

n−1⋃

k,l=1

k<l

Fnkl

}
+ P

{
Wn > x,

n−1⋃

k,l=1

k>l

Fnkl

}
+ P

{
Wn > x,

n−1⋃

k=1

Fnkk

}

≡ Pn11 + Pn12 + Pn13. (20)

The third probability is negligible in the sense that

Pn13 ≤ P
{n−1⋃

k=1

(D(1)
nk ∩D

(2)
nk )

}
≤

n−1∑

k=1

P{D(1)
nk }P{D(2)

nk }
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≤ B(x)
∞∑

k=1

B(x + k(a− b− ε))

≤ B(x)BI(x)/(a− b− ε) = o((BI(x))2) (21)

as x → ∞, since B(x) = o(BI(x)). The first probability in (20) admits the
following upper bound:

Pn11 ≤
n−1∑

k=1

P
{
Wn > x, D

(1)
nk , αk = 1,

n−1⋃

l=k+1

(D(2)
nl ∩Dnkl)

}

+
n−1∑

k=1

P
{
Wn > x, D

(1)
nk , αk = 2,

n−1⋃

l=k+1

(D(2)
nl ∩Dnkl)

}
≡ Σ1 + Σ2.

For Σ1, we have the following inequality and equalities:

Σ1 ≤
n−1∑

k,l=1

k<l

P
{
D

(1)
nk , αk = 1, D

(2)
nl , Dnkl

}

=
n−1∑

k,l=1

k<l

P{αk = 1}P
{
D

(1)
nk , D

(2)
nl , Dnkl

}
=

1
2

n−1∑

k,l=1

k<l

P{Fnkl}, (22)

by independence of the event {αk = 1} from D
(1)
nk , D

(2)
nl and Dnkl and by the

symmetry (13). The sum Σ2 is not greater than

Σ2 ≤
n−1∑

k=1

P
{
Wn > x, D

(1)
nk , αk = 2

}

=
n−1∑

k=1

P{D(1)
nk }P

{
Wn > x, αk = 2

}
≤ P{Wn > x}

n−1∑

k=1

P{D(1)
nk }.

Hence, Σ2 = o(P{Wn > x}) as x →∞ uniformly in n. Combining the latter fact
with estimate (22) for Σ1, we get

Pn11 ≤ 1
2

n−1∑

k,l=1

k<l

P{Fnkl}+ o(P{Wn > x}). (23)

Taking into account the equality Pn11 = Pn12, we obtain from (20), (21) and (23)
the following estimate:

Pn1 ≤
n−1∑

k,l=1

k<l

P{Fnkl}+ o((BI(x))2)
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as x → ∞ uniformly in n. Now applying the calculations of Section 3.3 we can
write down the following estimate, as x →∞:

lim sup
n→∞

Pn1 ≤ 1 + o(1)
a(2a− b′)

[
(BI(x))2 + b′

∫ ∞

0
BI(x + ya′)B(x + y(a− b′))dy

]
.

(24)

It is proved in (18) that, uniformly in n,

Pn3 = o((BI(x))2) as x →∞. (25)

We have
n−N⋃

k,l=1

Fnkl ∩
n−N⋃

k,l=1

(
A

(1)
nk ∩A

(2)
nl

)
⊆

n−N⋃

k,l=1

(
A

(1)
nk ∩A

(2)
nl ∩ Fnkl

)
.

Thus,

Pn2 ≤
n−N∑

k,l=1

P{Wn > x | A(1)
nk , A

(2)
nl , Fnkl}P{A(1)

nk ∩A
(2)
nl }. (26)

Conditioning on Wnk and Wnl yields, for any w > 0,

P{Wn > x | A(1)
nk , A

(2)
nl , Fnkl} ≤ P{Wn > x | Wk1 ≤ w,Wl2 ≤ w, A

(1)
nk , A

(2)
nl , Fnkl}

+P{Wk1 > w}+ P{Wl2 > w}.
Since b < 2a, the two-server queue is stable and, in particular, the sequence of
distributions of random variables (Wn1, Wn2) is tight. It means that, for any
fixed ε > 0, there exists w such that, for any k ≥ 0 and l ≥ 0,

P{Wk1 > w} ≤ ε and P{Wl2 > w} ≤ ε.

Also, from the stability and from Corollary 4, for any fixed ε > 0 and w > 0,
there exists N such that, for any n ≥ N and k, l ≤ n−N ,

P{Wn > x | Wk1 ≤ w,Wl2 ≤ w, A
(1)
nk , A

(2)
nl , Fnkl} ≤ ε.

Combining these estimates we obtain from (26),

Pn2 ≤ 3ε
n−N∑

k,l=1

P{A(1)
nk ∩A

(2)
nl } = 3ε

(n−N∑

k=1

P{A(1)
nk }

)2
.

Hence,

Pn2 ≤ 3ε
( ∞∑

k=1

B(x + k(a− b′))
)2 ≤ 3ε

(a− b′)2
(BI(x))2. (27)

Since the choice of ε > 0 is arbitrary, relations (19)–(25) and (27) imply the
conclusion of Theorem 4.
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5. The minimal stability case: lower bounds

Theorem 5. Let b ∈ (a, 2a) and the integrated tail distribution BI be long
tailed. Then the tail of the stationary waiting time satisfies the following inequal-
ity, for any fixed δ > 0:

P{W > x} ≥ 1 + o(1)
2a− b

BI

( b + δ

b− a
x
)

as x →∞.

Notice that if b ∈ (a, 2a) then b
b−a > 2.

R e m a r k 4. By use of similar arguments, one can get the following result
for an s-server queue, s ≥ 2: if the integrated distribution BI is long tailed and
b ∈ ((s− 1)a, sa), then, for any δ > 0,

P{W > x} ≥ 1 + o(1)
sa− b

BI

(
(s− 1)b− s(s− 2)a + δ

b− (s− 1)a
x

)
as x →∞.

Theorem 5 implies the following

Corollary 6. Assume that BI ∈ I RV . Then, as x →∞,

P{W > x} ≥ 1 + o(1)
2a− b

BI

( b

b− a
x
)
.

In the case b ∈ [a, 2a), one can also derive a lower bound which is similar to
(6). More precisely, assume b ∈ [a, 2a). Then introduce another two-server queue
with the same service times and with inter-arrival times τ ′n = cτn, where c > b/a.
For this queue, denote by W ′ a stationary waiting time of a typical customer.
Due to monotonicity, P{W ′ > x} ≤ P{W > x} for all x. Applying Theorem 3
and Remark 1, we get the following lower bound for the case b ∈ [a, 2a): if the
integrated tail distribution BI is long-tailed, then, for any c > b/a,

P{W > x} ≥ (1 + o(1))
2ca + b

2c2a2(2ca− b)
(BI(x))2. (28)

P r o o f of Theorem 5. By Lemma 2, it is sufficient to prove the lower bound
for the queueing system D/GI/2 with deterministic input stream. Let the inter-
arrival times τn be deterministic, i.e., τn ≡ a. For any δ > 0, set ε = δ(b−a)

a+δ . Put
b′ = b− ε and N = x

b′−a . For any k ∈ [1, n−N ], consider the events

Ank = {σk > 2x + (2a− b′)(n− k)},

Cnk =
n⋂

l=1

l 6=k

{σl ≤ 2x + (2a− b′)(n− l)}.
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Since Eσ is finite,

P{Cnk} ≤
∞∑

l=1

P{σ1 > 2x + (2a− b′)l} = O(BI(2x)) → 0 (29)

as x →∞ uniformly in n ≥ 1 and k ≤ n. Since the events Ank ∩ Cnk, k ∈ [1, n],
are disjoint, we obtain

P{Wn > x} ≥
n−N∑

k=1

P{Wn > x,Ank, Cnk}

≥
n−N∑

k=1

P{Wn > x,Ank} −
n−N∑

k=1

P{Ank, Cnk}.

Since the events Ank and Cnk are independent, we get

P{Wn > x} ≥
n−N∑

k=1

P{Wn > x, Ank} − sup
k≤n

P{Cnk}
n−N∑

k=1

P{Ank}

=
n−N∑

k=1

P{Wn > x | Ank}P{Ank} − o(1)
n−N∑

k=1

P{Ank} (30)

as x →∞ uniformly in n ≥ 1, by (29). The event Ank implies the event

Wk+1,2 > 2x + (2a− b′)(n− k)− a.

Thus, it follows from Corollary 5 that

P{Wn > x | Ank} → 1

as x →∞ uniformly in n and k ≤ n−N . Therefore, we can derive from (30) the
estimate

P{W > x} = lim
n→∞P{Wn > x} ≥ (1− ε) lim

n→∞

n−N∑

k=1

P{Ank}

= (1− ε)
∞∑

k=N

B(2x + (2a− b′)k),

which is valid for all sufficiently large x. Since the tail BI(v) is long-tailed,

∞∑

k=N

B(2x + (2a− b′)k) ∼ 1
2a− b′

BI(2x + (2a− b′)N)

=
1

2a− b′
BI

( b′

b′ − a
x
)

=
1

2a− b′
BI

( b + δ

b− a
x
)

as x →∞. The proof is complete.
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6. The minimal stability case: an upper bound

Theorem 6. Assume b ∈ [a, 2a). Let both B and BI be subexponential dis-
tributions. Then the tail of the stationary waiting time satisfies the following
inequality, as x →∞:

P{W ≥ x} ≤ 1 + o(1)
2a− b

BI(2x).

Re m a r k 5. By use of the same arguments, one can get the following result
for any s-server queue, s ≥ 2: if BI ∈ S and b < sa, then

P{W > x} ≤ 1 + o(1)
sa− b

BI(sx) as x →∞

provided that either (i) σ1 ≥ (s− 1)a a.s., or (ii) B ∈ S .
R e m a r k 6. For an s-server queue, Foss and Chernova [10] have proposed

another way of obtaining upper bounds; it is based on comparison with a queue
with the so-called cyclic service discipline.

P r o o f of Theorem 6. From Lemma 3, it is sufficient to consider the case of
constant interarrival times τn ≡ a only. Put Mn,0 = 0 and

Mn,i+1 = (Mn,i + σn+i − a)+.

Since b > a, M0,n →∞ a.s. as n →∞ and, due to the Law of Large Numbers,

M0,n

n
→ b− a a.s. (31)

and in mean. Note that EM0,n ≥ n(b − a), since M0,n ≥ σ0 + . . . + σn−1 − na.
For any given ε > 0, choose an integer L > 0 such that

EM0,L

L
∈ [b− a, b− a + ε). (32)

Consider any initial workload vector W0 = (W0,1,W0,2) ≥ 0. Put Zn =
Wn,1 + Wn,2. Since the increments of the minimal coordinate of the waiting time
vector is not greater than the increments of M0,n,

W1,n −W1,0 ≤ M0,n for any n.

Hence, provided Wn,2 ≥ a, we have the inequality

Zn+1 − Zn ≤ M0,n+1 −M0,n − a.

If Z0 ≥ 2aL, then W0,2 ≥ aL and, for n = 0, . . . , L − 1, Wn,2 ≥ a(L − n) ≥ a.
Therefore, if Z0 ≥ 2aL, then

ZL ≤ Z0 + M0,L − aL.
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Monotonicity implies, for any initial vector W0,

ZL ≤ max{2aL,Z0}+ M0,L − aL.

Thus, the following inequalities are valid for any n:

Z(n+1)L ≤ max{2aL,ZnL}+ MnL,L − aL. (33)

Consider a single-server queue with i.i.d. service times σ̂n = MnL,L and con-
stant inter-arrival times τ̂n = La and denote by Ŵn a waiting time of nth cus-
tomer. This queue is stable since b̂ ≡ Eσ̂1 < aL ≡ â. Put Ŵ0 = 0. Assuming
that Z0 = 0, we can derive from (33) the following bounds: for all n = 0, 1, . . . ,

ZnL ≤ 2aL + Ŵn a.s. (34)

Denote G(x) = P{σ̂0 > x}. We show that integrated tail distribution GI is
subexponential one. We need to consider only the case L > 1. Note first that

σ0 + . . . + σL−1 − La ≤ σ̂0 ≤ σ0 + . . . + σL−1 a.s. (35)

Since the distribution of σ1 is assumed to be subexponential, the asymptotics for
the lower and upper bounds in the latter inequalities are the same: as x →∞,

P
{L−1∑

0

σi − La > x
}
∼ P

{L−1∑

0

σi > x
}
∼ LB(x). (36)

Therefore, the tail G(x) has the same asymptotics and G is a subexponential
distribution. Thus,

GI(x) =
∫ ∞

x
G(y)dy ∼ LBI(x). (37)

and GI is a subexponential distribution, too. Thus, by classic result (1) for the
single server queue, the steady state distribution of the waiting time Ŵn satisfies
the following relations, as x →∞:

lim
n→∞P{Ŵn > x} ∼ 1

â−b̂
GI(x) ≤ 1

(2a−b−ε)L
GI(x) ∼ 1

2a−b−ε
BI(x), (38)

by (32) and (37). Since Zn = Wn,1 + Wn,2 ≥ 2Wn,1,

P{W > x} = P{2W > 2x} ≤ lim
n→∞P{ZnL > 2x}.

Now it follows from (34) and (38) that

P{W > x} ≤ lim
n→∞P{Ŵn > 2x− 2aL}

≤ 1 + o(1)
2a− b− ε

BI(2x− 2aL) ∼ 1
2a− b− ε

BI(2x),

since BI is long-tailed. Letting ε ↓ 0 concludes the proof.
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7. The minimal stability case: exact asymptotics

In this Section, we prove Theorem 2. First note that, as follows from (28), the
tail P{W > x} may be heavier than that in Theorem 2, in general. For instance,
this happens if

BI

( b

b− a
x
)

= o(B2
I(x)) as x →∞. (39)

Assume b ∈ (a, 2a) and consider, for example, a service time distribution with the
Weibull integrated tail BI(x) = e−xβ

, β ∈ (0, 1). Then (39) holds if ( b
b−a)β > 2.

P r o o f of Theorem 2. Since BI ∈ I RV , both the lower bound in Theorem
5 and the upper bound in Theorem 6 are of the same order,

BI(2x) = O
(
BI

( b

b− a
x
))

. (40)

We use the notation from the previous Section. In particular, we fix ε > 0
and choose L satisfying (32). For any constant c ≥ 0, (35) implies

L−1⋃

i=0

{σkL+i > x + La + (L− i)c} ⊆
{ L−1∑

i=0

σkL+i − La > x

}
⊆ {σ̂k > x}.

Therefore, from (35) and (36),

P
{
{σ̂k > x} \

L−1⋃

i=0

{σkL+i > x + La + (L− i)c}
}

= o(B(x)). (41)

Take c = (â− b̂)/L. By (34),

P{W > x} = lim
n→∞P{WnL,1 > x} = lim

n→∞P{WnL,1 > x, Ŵn > 2x− 2aL}.

Standard arguments concerning how large deviations in the single server queue
Ŵn occur imply the relation

P{W > x} = lim
n→∞

n−1∑

k=0

P{WnL,1 > x, σ̂k > 2x + (n− k)(â− b̂)}+ o(BI(2x))

= lim
n→∞

nL−1∑

i=0

P{WnL,1 > x, σi > 2x + (n− i)c}+ o(BI(2x)),

by (41). Now it follows from (32) that

P{W > x} ≤ lim
n→∞

nL−1∑

i=0

P{WnL,1 > x, σi > 2x+(n−i)(2a−b−ε)}+ o(BI(2x))
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≤ lim
n→∞

nL∑

j=1

P{WnL,1 > x, σnL−j > 2x+j(2a−b+ε)}+ εO(BI(2x)) + o(BI(2x))

= lim
n→∞

(N(1−ε)∑

j=1

+
nL∑

j=N(1−ε)

)
+ εO(BI(2x)) ≡ lim

n→∞(Σ1 + Σ2) + εO(BI(2x)),

where N = x/(b− a). The second term admits the following estimate

Σ2 ≤
∞∑

j=N(1−ε)

P{σ > 2x + j(2a− b)}

∼ 1
2a− b

BI(2x + N(1− ε)(2a− b)) =
1

2a− b
BI

( b

b− a
x− ε

2a− b

b− a
x
)
.

It follows from BI ∈ I RV that, for any δ > 0, there exists ε > 0 such that

Σ2 ≤ 1
2a− b

BI

( b

b− a
x
)

+ δBI(2x),

which coincides with the lower bound in Theorem 5.
Now consider the first term Σ1. Since the queue is stable, one can choose

K > 0 such that P{Wn,2 ≤ K} ≥ 1− ε for all k. Then

Σ1 ≤
N(1−ε)∑

j=1

P{WnL−j,2 > K, σnL−j > 2x + (2a− b + ε)j}

+
N(1−ε)∑

j=1

P{WnL,1 > x, WnL−j,2 ≤ K, σnL−j > 2x + (2a− b + ε)j}

≡ Σ1,1 + Σ1,2.

We have

Σ1,1 =
N(1−ε)∑

j=1

P{WnL−j,2 > K}P{σ1 > 2x + (2a− b + ε)j}

≤ ε
∞∑

j=1

P{σ1 > 2x + (2a− b)j} ≤ ε

2a− b
BI(2x).

Note that if WnL−j,2 ≤ K, then WnL,1 ≤ K + MnL−j+1,j−1. Therefore,

Σ1,2 ≤
N(1−ε)∑

j=1

P{σnL−j > 2x + (2a− b)j,K + MnL−j+1,j−1 > x}

=
N(1−ε)∑

j=1

P{σnL−j > 2x + (2a− b)j}P{K + M0,j−1 > x}.
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Since the sequence M0,j stochastically increases,

Σ1,2 ≤ P{K + M0,N(1−ε) > x}
∞∑

j=1

P{σ1 > 2x + (2a− b)j}

≤ P{M0,N(1−ε) > x−K} 1
2a− b

BI(2x).

Since
x−K

N(1− ε)
→ b− a

1− ε
> b− a as x →∞,

we have by (31)

P{M0,N(1−ε) > x−K} = P
{ MN(1−ε)

N(1− ε)
>

x−K

N(1− ε)

}
→ 0.

Thus, we have shown that the upper bound for P{W > x} is not bigger than
the lower bound in Theorem 5 plus a term of order

(ε + δ)O(BI(2x)) ≤ (ε + δ)O
(
BI

( bx

b− a

))

due to (40). Since ε > 0 and δ > 0 may be chosen as small we please, the proof
of Theorem 2 is complete.

8. Tail asymptotics for the two-dimensional workload vector

Denote by W 0 = (W 0
1 ,W 0

2 ) a weak limit for the vectors Wn as n →∞. Clearly,
W = W 0

1 .
8.1. Maximal stability case. First, we obtain simple lower and upper

bounds which are equivalent up to some constant. Second, we give (without a
proof) a result related to the exact asymptotics.

Theorem 7. Let b < a and BI ∈ L . Then, as x, y →∞, x ≤ y,

P{W 0
1 > x,W 0

2 > y} ≥ 1 + o(1)
a2

BI(x)BI(y).

If, in addition, BI ∈ S , then

P{W 0
1 > x,W 0

2 > y} ≤ 2 + o(1)
(a− b)2

BI(x)BI(y).

P r o o f. Fix ε > 0 and put a′ = a + ε. For k, l ≤ n, k 6= l, define the events
Ankl and Cnkl by the equalities

Ankl =
{
σk > x + (n− k)a′, σl > y + (n− l)a′

}
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and

Cnkl =
n⋂

j=1

j 6=k,l

{
σj ≤ x + (n− j)a′

}
.

Note that the events Ankl ∩ Cnkl are disjoint for different pairs (k, l) and

P{Wn1 > x, Wn2 > y} ≥
n∑

k=1

n∑

l=k+1

P{Wn1 > x, Wn2 > y,Ankl, Cnkl}.

Then the same calculations as in Subsection 3.3 imply the estimate, as x, y →∞,

P{Wn1 > x, Wn2 > y} ≥ (1 + o(1))
n−1∑

k=1

n−1∑

l=k+1

B(x + (n− k)a′)B(y + (n− l)a′)

= (1 + o(1))
n−1∑

k=1

n−k−1∑

l=1

B(x + ka′)B(y + la′).

Hence,

P{W 0
1 > x, W 0

2 > y} ≥ (1 + o(1))
∞∑

k=1

∞∑

l=1

B(x + ka′)B(y + la′) ∼ BI(x)BI(y)/a′2

and the lower bound is proved.
Proceed to the upper bound. Due to construction of the majorant (W (1)

n , W
(2)
n )

in Section 4, we have the inequality

P{W 0
1 > x, W 0

2 > y} ≤ lim
n→∞

[
P{W (1)

n > x, W (2)
n > y}+ P{W (1)

n > y, W (2)
n > x}

]

= 2 lim
n→∞P{W (1)

n > x}P{W (2)
n > y}.

Together with (16) it implies the desired upper bound. Theorem 7 is proved.
Turn now to the exact asymptotics. Below is the result. The proof is rather

complicated and will be presented in another paper. Denote

R(x, y) = BI(x)BI(y) + b

∫ ∞

0
BI(y + za)B(x + x(a− b))dz.

Recall that Theorem 1 states that P{W 0
1 > x} ∼ R(x, x)/a(2a−b) given BI ∈ S .

Theorem 8. Assume b < a and BI ∈ S . Let x, y →∞, x ≤ y. Then

P{W 0
1 > x, W 0

2 > y} ∼ 1
a(2a− b)

R(y, y) +
1
a2

(R(x, y)−R(y, y)).
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8.2. Minimal stability case. We prove the following

Theorem 9. Assume a < b < 2a, B ∈ S , and BI ∈ I RV . Let x, y → ∞
in such a way that y/x → c ∈ [1,∞]. Then

P{W 0
1 > x,W 0

2 > y} ∼ 1
a
BI

(
y
(
1 +

a

c(b− a)

))
+

b− a

a(2a− b)
BI

(
y

b

b− a

)
.

P r o o f. Start with the case c = ∞. From Theorem 10 in [3], one can get the
following:

Corollary 7. Assume b ∈ (a, 2a). If B ∈ S and BI ∈ S , then, as y →∞,

P{W 0
2 > y} ∼ 1

a
BI(y) +

b− a

a(2a− b)
BI

(
y

b

b− a

)
.

It is clear that

P{W 0
1 > x, W 0

2 > y} ≤ P{W 0
2 > y}.

On the other hand, for any N = 1, 2, . . . ,

P{W 0
1 > x, W 0

2 > y} = lim
n→∞P{Wn,1 > x,Wn,2 > y}

≥ lim
n→∞P

{
Wn−N,2 > y + Na,

n−1∑

j=n−N

(σj − τj) > x
}

= lim
n→∞P{Wn−N,2 > y + Na}P

{ N∑

j=1

(σj − τj) > x
}
.

Fix ε > 0. Put N = N(x) = x(1 + ε)/(b− a). Then by LLN

P
{ N∑

j=1

(σj − τj) > x
}
≥ 1− ε

for all sufficiently large x and, as n →∞,

P{Wn−N,2 > y + Na} → P{W 0
2 > y + Na}.

Since BI ∈ I RV ,

P{W 0
2 > y + Na} ∼ P{W 0

2 > y} as y →∞.

By letting ε → 0, we get the result.
Now consider the case c < ∞. If c = 1, then the result follows from Theorem

2. Let c ∈ (1,∞). We give here only a sketch of the proof, by making links to
the proof of Theorem 2.



HEAVY TAILS IN MULTI-SERVER QUEUE 29

Since
P{W 0

1 > y} ≤ P{W 0
1 > x, W 0

2 > y} ≤ P{W 0
1 > x}

and
P{W 0

1 > y} ∼ P{W 0
1 > cx} ≥ (K + o(1))P{W 0

1 > x}
where K = inft BI(ct)/BI(t) > 0, one can get from the proof of Theorem 2
the following equivalences: for Nx = x/(b − a), Ny = y/(b − a), and for ε ∈
(0, 1− 1/

√
c),

P{W 0
1 > x,W 0

2 > y}

= lim
n→∞

n−Nx(1−ε)∑

i=1

P{Wn,1 > x,Wn,2 > y, σi > 2x + (n−i)(2a−b)}+ εO(BI(2x))

= lim
n→∞

(n−Ny(1+ε)∑

i=1

+
n−Nx(1−ε)∑

i=n−Ny(1+ε)

)
+ εO(BI(2x)) ≡ (Σ1 + Σ2) + εO(BI(2x)).

Choose K > 0 such that P{Wn,2 > K} ≤ ε for all n. Then

Σ2 = lim
n→∞

n−Nx(1−ε)∑

i=n−Ny(1+ε)

P{Wi,2 ≤ K, Wn,1 > x, Wn,2 > y, σi > 2x + (n−i)(2a−b)}

+εO(BI(2x)).

From Lemma 2 and its Corollaries,

Σ2 = (1 + o(1))
Ny(1+ε)∑

j=Nx(1−ε)

P{σ1 > y + ja}+ εO(BI(x))

=
1 + o(1)

a

(
BI

(
y +

x(1− ε)a
b− a

)
−BI

(y(b + εa)
b− a

))
+ εO(BI(x))

=
1 + o(1)

a

(
BI

(
y
(
1 +

a

c(b− a)

))
−BI

( yb

b− a

))
+ (ε + δ)O(BI(x)),

due to BI ∈ I RV . From Lemma 3 and its Corollaries, one can also conclude
that, for i < n − Ny(1 + ε), if σi < 2y + (n − i)(2a − b − ε) and Wi,2 ≤ K,
then, with probability close to one, both coordinates of the vector (Wn,1,Wn,2)
take values less then y for all sufficiently large n. From the other side, if σi >
2y + (n − i)(2a − b + ε), then, with probability close to one, y < Wn,1 ≤ Wn,2.
Therefore,

Σ1 = (1 + o(1))
∞∑

j=Ny(1+ε)

P{σ1 > 2y + j(2a− b)}+ εO(BI(x))

=
1 + o(1)
2a− b

BI

( yb

b− a

)
+ εO(BI(x)).

Summing up the terms and letting ε and δ → 0 concludes the proof.
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9. Comments on stationary queue length

Let Qn be a queue length viewed by an arriving customer n, and Q its stationary
version in discrete time (i.e. Palm-stationary). Due to the distributional Little’s
law,

P{Q > n} = P{W > Tn}
where W is the stationary waiting time, Tn = τ1 + . . .+ τn, and W and Tn do not
depend on each other. When a distribution of W is long-tailed, the asymptotics
for P{W > Tn}, n → ∞, have been found in [2] and in [11]. If, in addition, τn

has a non-lattice distribution, there exists a stationary distribution G for a queue
length in continuous time. Then, from Lemma 1 in [11],

G(n) ∼ P{Q > n} as n →∞.
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