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THE PROBABILITY OF EXCEEDING A HIGH BOUNDARY
ON A RANDOM TIME INTERVAL FOR A

HEAVY-TAILED RANDOM WALK

BY SERGUEI FOSS,1 ZBIGNIEW PALMOWSKI2 AND STAN ZACHARY

Heriot–Watt University, University of Wrocław and Utrecht University,
and Heriot–Watt University

We study the asymptotic probability that a random walk with heavy-
tailed increments crosses a high boundary on a random time interval. We use
new techniques to extend results of Asmussen [Ann. Appl. Probab. 8 (1998)
354–374] to completely general stopping times, uniformity of convergence
over all stopping times and a wide class of nonlinear boundaries. We also
give some examples and counterexamples.

1. Introduction and main results. The analysis of random walks with
heavy-tailed increments is central to the understanding of many problems in
insurance, finance, queueing networks and storage theory. In particular, we are
often interested in determining the probability of overcrossing a deterministic
curve {x + g(n)}n≥0 as x is allowed to become large.

Thus, in this paper, we consider a sequence {ξn}n≥1 of independent identically
distributed random variables with distribution function F . We assume throughout
that F belongs to the class L of long-tailed distribution functions, where a
distribution function G ∈ L if and only if

�G(x) > 0 for all x, lim
x→∞

�G(x − h)

�G(x)
= 1 for all fixed h > 0.(1)

Here �G denotes the tail distribution given by �G(x) = 1−G(x). We further assume
throughout that the distribution F has a finite mean mF = Eξ1. Without loss of
generality (see below), we assume

mF = 0.

Define the random walk {Sn}n≥0 by

S0 = 0, Sn =
n∑

i=1

ξi, n ≥ 1.
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For any nonnegative function g on Z+, define also the process {Sg
n }n≥0 by

Sg
n = Sn − g(n), n ≥ 0.

The process {Sg
n }n≥0 is investigated in nonlinear renewal theory (see [22]), and

also in many other examples in probability and queueing theory (see, e.g., [1, 7,
20, 21, 24]). Note also that any subadditive functional of a random walk is of this
form—see [8].

For n ≥ 0, let

Mg
n = max

0≤i≤n
S

g
i .

Similarly, for any stopping time σ for the random walk {Sn}n≥0 (i.e., for any
random variable σ taking values in Z+ ∪ {∞} such that, for all n ≥ 0, the event
{σ ≤ n} is independent of {ξn+1, ξn+2, . . .}), let

Mg
σ = max

0≤i≤σ
S

g
i .

Define also the decreasing function H
g
σ by

Hg
σ (x) = ∑

n≥1

P(σ ≥ n)�F (
x + g(n)

)
.

Note that the function H
g
σ is monotone decreasing in g [i.e., if g1(n) ≥ g2(n)

for all n, then H
g1
σ (x) ≤ H

g2
σ (x) for all x] and monotone increasing in σ [i.e., if

σ1 ≥ σ2 a.s., then H
g
σ1(x) ≥ H

g
σ2(x) for all x]. Note also that, since F has a finite

mean, H
g
σ is finite for all σ and all g such that g(n) ≥ cn for some c > 0; further,

since F ∈ L, an elementary truncation argument along the lines of the proof of
Lemma 1(i) shows that, for any σ such that Eσ < ∞ and nonnegative function g,
H

g
σ (x) is finite for all x and

Hg
σ (x) = (

1 + o(1)
)
Eσ �F(x) as x → ∞.(2)

We are interested in the asymptotic distribution of M
g
σ for a general stopping

time σ (which need not be a.s. finite). In particular, we are interested in obtaining
conditions under which

P(Mg
σ > x) ≥ (

1 + o(1)
)
Hg

σ (x) as x → ∞,(3)

and in obtaining (stronger) conditions under which

P(Mg
σ > x) = (

1 + o(1)
)
Hg

σ (x) as x → ∞,(4)

in each case with uniformity over suitable classes of stopping times σ and
functions g. [We shall say, e.g., that the result (3) holds with uniformity over all σ

and all g—in appropriate classes—if and only if there exists a function δ on R+
such that δ(x) → 0 as x → ∞ and P(M

g
σ > x) ≥ (1 − δ(x))H

g
σ (x) for all x ∈ R+

and for all σ and all g.]
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The event {Mg
σ > x} may be reinterpreted as the event that the random

walk {Sn}n≥0 crosses the (arbitrary) increasing boundary {x + g(n)}n≥0 by the
stopping time σ . The intuitive interpretation of the relation (4), in particular, is
that, for x very large, the only significant way in which the random walk can cross
this boundary is that it remains close to its mean zero up to some time n when, with
probability �F(x + g(n)), it jumps above x + g(n). This property is the “principle
of one big jump” and is characteristic of the subexponential property (see below)
which we shall in general require (at a minimum) of F in order to obtain conditions
for (4) to hold.

Our results below are also applicable to random walks whose increments have a
nonzero mean: it is clearly sufficient to make the obvious shift transformation. In
particular, by considering, for c > 0, the function g(n) = cn, the results include as
a special case those for the maximum on a random interval of a random walk with
drift −c. The results obtained in this case both generalize and extend earlier results
of Asmussen [2] and Foss and Zachary [14]. We give a more detailed discussion
of this below.

In order to state our results, we require some further definitions. A distribution
function G on R+ is subexponential if and only if �G(x) > 0 for all x and

lim
x→∞G∗2(x)/ �G(x) = 2(5)

(where G∗2 is the convolution of G with itself ). More generally, a distribution
function G on R is subexponential if and only if G+ is subexponential,
where G+ = GIR+ and IR+ is the indicator function of R+. It is known that
the subexponentiality of a distribution depends only on its (right) tail, and
that a subexponential distribution is long-tailed. We let S denote the class of
subexponential distributions, so that, in particular, S ⊂ L.

A distribution function G on R belongs to the class S∗ introduced by [16] if and
only if �G(x) > 0 for all x and∫ x

0
�G(x − y)�G(y)dy ∼ 2mG+ �G(x) as x → ∞,(6)

where

mG+ =
∫ ∞

0
�G(x)dx

is the mean of G+. It is again known that the property G ∈ S∗ depends only on the
tail of G. Further, if G ∈ S∗ then G ∈ S, and also Gs ∈ S, where

Gs(x) = min
(

1,

∫ ∞
x

�G(t) dt

)
is the integrated, or second-tail, distribution function determined by G—see [16].

Let T be the class of all stopping times for the random walk {Sn}n≥0. For any
stopping time ϕ, let

Tϕ = {σ ∈ T :σ ≤ ϕ a.s.}.
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In particular, for any integer N > 0, TN is the class of stopping times almost surely
bounded by N .

For any constant c (we shall primarily be interested in c ≥ 0), let Gc be the class
of nonnegative functions g satisfying

g(1) ≥ c, g(n + 1) ≥ g(n) + c, n ≥ 1.(7)

In particular, G0 is the class of nonnegative nondecreasing functions on Z+. Note
also that the class Gc is monotone decreasing in c.

As a preliminary result, we prove the following theorem, which relates to
bounded stopping times.

THEOREM 1. (i) Suppose that F ∈ L. Then, given any integer N > 0, the
result (3) holds uniformly over all σ ∈ TN and all g ∈ G0.

(ii) Suppose, additionally, that F ∈ S. Then, given any integer N > 0, the
result (4) holds uniformly over all σ ∈ TN and all g ∈ G0.

Our main result is then Theorem 2.

THEOREM 2. (i) Suppose that F ∈ L. Then, given any c > 0, the result (3)
holds uniformly over all σ ∈ T and all g ∈ Gc.

(ii) Suppose, additionally, that F ∈ S∗. Then, given any c > 0, the result (4)
holds uniformly over all σ ∈ T and all g ∈ Gc.

We have stated these results under those conditions which appear to us
most natural. There are some obvious extensions which are immediate from the
condition F ∈ L which we assume throughout. This condition implies that also
H

g
σ ∈ L with uniformity of convergence in the definition (1) over all stopping

times σ and nonnegative functions g. Thus, for example, for any c for which one
of the results of Theorems 1 or 2 holds, and for any fixed d > 0, we may expand
the corresponding class Gc to include any function g such that g′ ≤ g ≤ g′ + d

for some function g′ ∈ Gc—since then H
g′
σ (x)/H

g′+d
σ (x) → 1 as x → ∞ with

the required uniformity properties. One consequence of this observation is that
we may, in either of the results of Theorem 1, replace G0 by Gc for any c ∈ R.
That we may not, in general, even for a single bounded stopping time σ , obtain
the results of Theorem 1 with uniformity over all nonnegative functions g is
shown by Example 1 of Section 3. See also that section for further discussion
and comments.

We now discuss briefly our main result, which is part (ii) of Theorem 2.
Consider first the slightly weaker condition F s ∈ S, and the case where the
function g is given by g(n) = cn for some c > 0, and the stopping time σ = ∞.
The conclusion (4) is then equivalent to the well-known result of Veraverbeke [19]
for the asymptotic distribution of the maximum of the random walk {Sn − cn}n≥0
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with drift −c (see the Appendix for conditions under which the function H
g
σ has

a tail equivalent integral representation). See also [12] and [11]. Now assume that
F ∈ S∗. In the case where the function g is again given by g(n) = cn for c > 0, and
the stopping time σ has a finite mean, it follows from (2) that the conclusion (4) is
equivalent to

P(Mg
σ > x) = (

1 + o(1)
)
Eσ �F(x) as x → ∞.(8)

(Again the event {Mg
σ > x} is most naturally interpreted in relation to the random

walk {Sn − cn}n≥0.) Asmussen [2] proved the result (8) for the stopping time
σ = τc ≡ min{n ≥ 1 :Sn − cn ≤ 0} (see also [15]). Foss and Zachary [14] extended
the result (8) to a general stopping time σ , and showed also the necessity (for a
general stopping time) of the condition F ∈ S∗. However, in the case Eσ = ∞
(which occurs naturally in many applications—see, e.g., Example 3 of Section 3),
the result (8) simply asserts that P(M

g
σ > x)/ �F(x) → ∞ as x → ∞ and does

not give the asymptotic form of the tail of the distribution of M
g
σ . Nor, as may

be deduced from the results of the present paper, does the result (8) hold with
uniformity even over all finite stopping times σ . In the present paper we obtain
the correct asymptotics in the case Eσ = ∞, we extend our results to arbitrary
boundaries g, and we give these results in such a form that in each case we obtain
uniformity of convergence over all stopping times σ (which need not be a.s. finite)
and over suitably wide classes of functions g. This uniformity corresponds to the
naturalness of the condition (4), as discussed above, and of course guarantees the
quality of the asymptotic results, notably over all σ . In particular, Theorem 2 thus
unifies the earlier, quite distinct, results for the cases Eσ < ∞ and σ = ∞ a.s.
(with g linear in each case).

Further, in the present paper we take Asmussen’s result (8) for g(n) = cn and
σ = τc as a starting point and use new and direct arguments to obtain our results for
general stopping times σ and classes of functions g. (Notably, we make no further
use, beyond its requirement for Asmussen’s result, of the condition F ∈ S∗.)
Denisov [9] has recently given a very simple proof of (8) for g(n) = cn and
σ = τc. This, taken with the present paper, now yields a relatively simple and
direct treatment of all our results.

We note also here that, in the case where the stopping time σ is independent of
{Sn}n≥0 and the function g is given by g(n) = cn for c > 0, that the result (4) holds
with uniformity over all such σ follows from the results of Korshunov [17]—see
the comments on this in [10].

In Section 2 we prove our main results, giving parallel developments of the
lower and upper bounds so as to identify carefully the conditions required for each.
We prove our results successively for bounded stopping times (Theorem 1 above),
stopping times bounded by a stopping time with a finite mean (for the upper bound
we require the stopping time τc identified above) and for quite general stopping
times (Theorem 2 above).
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In Section 3 we give various examples to show the applicability of the results,
together with counterexamples to show what goes wrong when we drop the
conditions of our theorems.

The Appendix gives a simple integral representation, under appropriate condi-
tions, of the function H

g
σ .

2. Proofs.

PROOF OF THEOREM 1. Since the results are trivial in the case σ = 0 a.s.
and by otherwise conditioning on the event {σ > 0}, we may assume throughout
without loss of generality that σ ≥ 1 a.s.

Since F ∈ L throughout, we may choose a function h : R+ → R+ such that

h(x) ≤ x for all x ≥ 0,(9)

h is increasing, h(x) → ∞ as x → ∞,(10)

�F(x − h(x))

�F(x)
→ 1 as x → ∞.(11)

(This follows from the condition F ∈ L by allowing the function h to increase
sufficiently slowly—see [14].)

Note that the results of both parts of the theorem are trivial in the case N = 1.
Given any integer N ≥ 2, consider any stopping time σ ∈ TN and any function
g ∈ G0. Then, for x ≥ 0,

P(Mg
σ > x) =

N∑
n=1

P(σ ≥ n,M
g
n−1 ≤ x,Sg

n > x)

=
N∑

n=1

P
(
σ ≥ n,M

g
n−2 ≤ x,

Sn−1 < −h
(
x + g(n − 1)

)
, Sg

n > x
)

+
N∑

n=1

P
(
σ ≥ n,M

g
n−2 ≤ x,

(12)
Sn−1 ∈ [−h

(
x + g(n − 1)

)
, h

(
x + g(n − 1)

)]
,

Sg
n > x

)
+

N∑
n=1

P
(
σ ≥ n,M

g
n−2 ≤ x,

Sn−1 ∈ (
h
(
x + g(n − 1)

)
, x + g(n − 1)

)
, Sg

n > x
)
,

where, for n = 1, we may take M
g
n−2 = 0.
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Since, for g ∈ G0,

P(M
g
n−2 > x) ≤ P(Mn−2 > x) → 0,

as x → ∞, and, from (10),

P
(
Sn−1 /∈ [−h

(
x + g(n − 1)

)
, h

(
x + g(n − 1)

)]) ≤ P
(
Sn−1 /∈ [−h(x),h(x)]) → 0

as x → ∞, it follows that, for 1 ≤ n ≤ N ,

P
(
σ ≥ n,M

g
n−2 ≤ x,Sn−1 ∈ [−h

(
x + g(n − 1)

)
, h

(
x + g(n − 1)

)])
(13)

= P(σ ≥ n) + o(1)

as x → ∞, uniformly over all σ ∈ TN and g ∈ G0. Further, it follows from (11)
that, for any n,

�F(x + g(n) ± h(x + g(n)))

�F(x + g(n))
→ 1 as x → ∞,(14)

uniformly over all g ∈ G0. Since also, for any n, h(x + g(n − 1)) ≤ h(x + g(n)),
it follows from (13) and (14) that

N∑
n=1

P
(
σ ≥ n,M

g
n−2 ≤ x,

Sn−1 ∈ [−h
(
x + g(n − 1)

)
, h

(
x + g(n − 1)

)]
, Sg

n > x
)

= (
1 + o(1)

) N∑
n=1

(
P(σ ≥ n) + o(1)

)�F (
x + g(n)

)
(15)

= (
1 + o(1)

)
Hg

σ (x) + o
(�F (

x + g(1)
))

= (
1 + o(1)

)
Hg

σ (x)

as x → ∞, uniformly over all σ ∈ TN and g ∈ G0, where the final line in (15)
follows since σ ≥ 1 a.s. Since the first and third terms on the right-hand side of (12)
are positive, the result (i) of the theorem now follows from (12) and (15).

To prove (ii), we suppose that F ∈ S. We require to show that (4) holds
uniformly over all σ ∈ TN and g ∈ G0. From (12) and (15), it is sufficient to show
that the first and third terms on the right-hand side of (12) are each o(H

g
σ (x)) as

x → ∞, again uniformly over all σ ∈ TN and g ∈ G0. That this is true for the first
of these terms follows since, for each n,

P
(
σ ≥ n,M

g
n−2 ≤ x,Sn−1 < −h

(
x + g(n − 1)

)
, Sg

n > x
)

≤ P
(
Sn−1 < −h

(
x + g(n − 1)

))�F (
x + g(n)

)
≤ P

(
Sn−1 < −h(x)

)�F (
x + g(1)

)
= o

(
Hg

σ (x)
)
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as x → ∞ [from (10) and since σ ≥ 1 a.s.] with the required uniformity.
In the case where σ is identically equal to N and g is identically equal to 0, it

is a standard result that

P(Mg
σ > x) = P

(
max

0≤n≤N
Sn > x

)
(16)

= (
1 + o(1)

)
N �F(x) as x → ∞,

(see [11]). Since in this case H
g
σ (x) = N �F(x), it follows from (12), (15) and (16)

that, for 1 ≤ n ≤ N ,

P
(
Si ≤ x, i ≤ n − 2;Sn−1 ∈ (

h(x), x
];Sn > x

) = o(�F(x)) as x → ∞.(17)

For general σ ∈ TN with σ ≥ 1 a.s. and g ∈ G0, it follows since g is nondecreasing
that the third term on the right-hand side of (12) is bounded above by

N∑
n=1

P
(
Si ≤ x + g(n − 1), i ≤ n − 2,

Sn−1 ∈ (
h
(
x + g(n − 1)

)
, x + g(n − 1)

]
, Sn > x + g(n − 1)

)
.

From (17), the nth term in the above sum is o(�F(x +g(n− 1))), and so also (since
σ ≥ 1 a.s. and g ∈ G0) the sum is o(H

g
σ (x)), as x → ∞, uniformly over all such σ

and g as required. �

REMARK 1. In Section 3 we give examples which show that we may not, in
general, drop the condition that g be nondecreasing.

The proof of our main result, Theorem 2, requires the separate derivation of
upper and lower bounds for P(M

g
σ > x). In Lemma 1 below, we first establish

these bounds for classes of stopping times intermediate between those of Theorems
1 and 2.

For any a > 0, define the stopping time τa = min{n ≥ 1 :Sn < an}. Note that,
since F has mean 0, Eτa is finite. For any a > 0, define also the function ā on Z+
by ā(n) = an.

LEMMA 1. (i) Given any stopping time ϕ such that Eϕ < ∞, the result (3)
holds uniformly over all σ ∈ Tϕ and all g ∈ G0.

(ii) Suppose that F ∈ S∗. Then, given any c > 0, the result (4) holds uniformly
over all σ ∈ Tτc and all g ∈ Gc.

PROOF. In the proofs of both (i) and (ii), we may again assume without loss
of generality, as in the proof of Theorem 1, that σ ≥ 1 a.s. Thus, given ϕ such that
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Eϕ < ∞, for any σ ∈ Tϕ with σ ≥ 1 a.s. and g ∈ G0, and for any integer N > 0
and all x > 0,

Hg
σ (x) − H

g
σ∧N(x) = ∑

n>N

P(σ ≥ n)�F (
x + g(n)

)
≤ �F (

x + g(1)
) ∑
n>N

P(σ ≥ n)

≤ Hg
σ (x)

∑
n>N

P(σ ≥ n)

≤ Hg
σ (x)

∑
n>N

P(ϕ ≥ n).

Hence, using Theorem 1(i) applied to the stopping time σ ∧ N , there exists a
function εN , which is independent of σ and g, such that εN(x) → 0 as x → ∞
and, for σ and g as above and for x > 0,

P(Mg
σ > x) ≥ P(M

g
σ∧N > x)

≥ (
1 − εN(x)

)
H

g
σ∧N(x)

≥ (
1 − εN(x)

)
Hg

σ (x)

(
1 − ∑

n>N

P(ϕ ≥ n)

)
.

Since Eϕ < ∞, it now follows that

P(Mg
σ > x) ≥ (

1 − ε′
N(x)

)
Hg

σ (x)(18)

for some positive function ε′
N , again independent of σ and g, such that

lim
N→∞ lim

x→∞ ε′
N(x) = 0.

This latter condition implies that (for any such sequence of functions {ε′
N }N≥1)

there exists an integer-valued function N on R+ such that limx→∞ ε′
N(x)(x) = 0.

Hence, from (18), we have the required result (3) with the required uniformity over
σ ∈ Tϕ and g ∈ G0.

To prove (ii), we suppose that F ∈ S∗ and that c > 0. Consider first the stopping
time σ = τc and the function g = c̄. For integer N > 0, it follows from the
result of Asmussen [2] referred to in the Introduction—see also [3], Chapter X,
Theorem 9.4—that, as x → ∞,

P
(
Mc̄

τc
> x

) = (
1 + o(1)

)
Eτc

�F(x + c)

= (
1 + o(1)

)(
E(τc ∧ N) + E(τc − N)+

)�F(x + c)(19)

= (
1 + o(1)

)(
Hc̄

τc∧N(x) + E(τc − N)+ �F(x + c)
)
,
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where (19) follows since F is long-tailed. Since S∗ ⊂ S, it follows also from
Theorem 1(ii) that

P
(
Mc̄

τc∧N > x
) = (

1 + o(1)
)
Hc̄

τc∧N(x) as x → ∞.(20)

Since also Hc̄
τc∧N(x) ≤ N �F(x + c), it follows from (19) and (20) that

P
(
Mc̄

τc∧N ≤ x,Mc̄
τc

> x
)

= P
(
Mc̄

τc
> x

) − P
(
Mc̄

τc∧N > x
)

(21)

= (
1 + o(1)

)
E(τc − N)+ �F(x + c) as x → ∞.

We now prove (4) for any σ ∈ Tτc and g ∈ Gc. For n ≥ 1, let dn = g(n) − cn.
Fix any integer N > 0. Then, for x > 0,

P(M
g
σ∧N ≤ x,Mg

σ > x) ≤ P
(
M

g
τc∧N ≤ x,Mg

τc
> x

)
(22)

≤ P
(
Mc̄

τc∧N ≤ x + dN,Mc̄
τc

> x + dN

)
(23)

≤ (
1 + o(1)

)
E(τc − N)+ �F (

x + g(1)
)
,(24)

uniformly over all such σ and g, where (22) follows by consideration of
sample paths, while (23) follows since the condition g ∈ Gc implies that dn is
nondecreasing in n, and finally, (24) follows from (21) on noting that dN ≥ d1 =
g(1) − c. Hence, from (24), using Theorem 1(ii) again and noting that, for all
x > 0, �F(x + g(1)) ≤ H

g
σ (x), we have that, as x → ∞,

P(Mg
σ > x) ≤ P(M

g
σ∧N > x) + (

1 + o(1)
)
E(τc − N)+ �F (

x + g(1)
)

≤ (
1 + E(τc − N)+ + o(1)

)
Hg

σ (x),

uniformly over all σ and g as above. Since E(τc − N)+ → 0 as N → ∞, we
conclude, as in the final part of the proof of part (i) above, that

P(Mg
σ > x) ≤ (

1 + o(1)
)
Hg

σ (x) as x → ∞,

again uniformly over all σ and g as above. The required result (4) now follows on
using also part (i) of the lemma. �

REMARK 2. Note that the result of Asmussen used in the above lemma
requires F ∈ S∗. This is the only point in the argument of the present paper in
which this condition is explicitly used.

The proof of the lower bound in Theorem 2 is by consideration of repeated
upcrossings by {Sn}n≥0 of boundaries of slope −a < 0, while the proof of the
upper bound is by consideration of repeated downcrossings of boundaries of
slope a > 0. In each case a is then allowed to tend to 0. Each argument requires
an application of Lemma 1 to the random walk “restarted” at these upcrossing or
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downcrossing times. We give this in Corollary 1 below, which is stated in a form
carefully adapted to its subsequent use.

For any a.s. finite stopping time ϕ and any a > 0, define the further stopping
time

ρϕ
a = ϕ + min{n ≥ 1 :Sϕ+n − Sϕ > −an}.

Note that, since F has mean 0, ρ
ϕ
a is a.s. finite.

Similarly, for any a.s. finite stopping time ϕ and a > 0, define the further
stopping time

τϕ
a = ϕ + min{n ≥ 1 :Sϕ+n − Sϕ ≤ an}.

Note again that τ
ϕ
a is a.s. finite.

COROLLARY 1. (i) Given any a > 0, there exists a function γa on R+ such
that limx→∞ γa(x) = 0 and

P(∃n :ϕ < n ≤ σ ∧ ρϕ
a , Sg

n − S−ā
ϕ > x)

(25)
≥ (

1 − γa(x)
) ∑
n≥1

P(ϕ < n ≤ σ ∧ ρϕ
a )�F (

x + g(n) + an
)
,

for all x > 0, all a.s. finite stopping times ϕ and all σ ∈ T and g ∈ G0.
(ii) Suppose that F ∈ S∗. Then, given any a > 0, there exists a function δa on R+

such that limx→∞ δa(x) = 0 and

P(∃n :ϕ < n ≤ σ ∧ τϕ
a , Sg

n − Sā
ϕ > x)

(26)
≤ (

1 + δa(x)
) ∑
n≥1

P(ϕ < n ≤ σ ∧ τϕ
a )�F (

x + g(n) − an
)
,

for all x > 0, all a.s. finite stopping times ϕ and all σ ∈ T and g ∈ Ga .

PROOF. We first prove (i). Fix a > 0. Note that the stopping time ρa ≡ ρ0
a ≡

min{n ≥ 1 : Sn > −an} has a finite mean. It follows from Lemma 1(i) that there
exists a function γa on R+ with limx→∞ γa(x) = 0 and such that, for any σ ∈ T
and g ∈ G0, and all x > 0,

P(∃n : 0 < n ≤ σ ∧ ρa, S
g
n > x)

(27)
≥ (

1 − γa(x)
) ∑
n≥1

P(n ≤ σ ∧ ρa)�F (
x + g(n)

)
.

Now given σ and g as above and any stopping time ϕ, to prove (25), we may
assume without loss of generality that ϕ = m for some constant m (for otherwise
we may condition on each possible value m of ϕ, and note that the function γa

is independent of m). Thus, consider the random walk {S′
n}n≥0 given by S′

n =
Sm+n −Sm. We have ρm

a −m = ρ′
a , where ρ′

a = min{n ≥ 1 :S′
n > −an}, and so the
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application of (27) to the random walk {S′
n}, the stopping time σ ′ = 0 ∨ (σ − m)

(for {S′
n}) and the function g′ ∈ G0 given by g′(n) = g(m + n) + am gives, for

x > 0,

P
(∃n : 0 < n ≤ (σ ∧ ρm

a ) − m,S
g
m+n − S−ā

m > x
)

= P
(∃n : 0 < n ≤ σ ′ ∧ ρ′

a, S
′
n > x + g′(n)

)
≥ (

1 − γa(x)
) ∑
n≥1

P
(
n ≤ (σ ∧ ρm

a ) − m
)�F (

x + g(m + n) + am
)

(28)

≥ (
1 − γa(x)

) ∑
n≥1

P
(
n ≤ (σ ∧ ρm

a ) − m
)

× �F (
x + g(m + n) + a(m + n)

)
,

where the last line follows since a > 0. Replace n by n − m in (28) to obtain

P(∃n :m < n ≤ σ ∧ ρm
a , Sg

n − S−ā
m > x)

≥ (
1 − γa(x)

) ∑
n≥m+1

P(n ≤ σ ∧ ρm
a )�F (

x + g(n) + an
)

= (
1 − γa(x)

) ∑
n≥1

P(m < n ≤ σ ∧ ρm
a )�F (

x + g(n) + an
)
,

which is (25) with ϕ = m as required.
The proof of (ii) is similar to that of (i) with only minor variations. Thus, we

suppose that F ∈ S∗, and fix a > 0. It follows from Lemma 1(ii) that there exists
a function δa on R+ with limx→∞ δa(x) = 0 and such that, for any σ ∈ T , any
g ∈ Ga , and all x > 0,

P(∃n : 0 < n ≤ σ ∧ τa, S
g
n > x)

(29)
≤ (

1 + δa(x)
) ∑
n≥1

P(n ≤ σ ∧ τa)�F (
x + g(n)

)
.

Again, given σ ∈ T , g ∈ Ga , and any a.s. finite stopping time ϕ, to prove (26),
we may assume without loss of generality that ϕ = m for some constant m. Since
τm
a − m = τ ′

a where τ ′
a = min{n ≥ 1 :S′

n < an}, application of the result (27) to
the random walk {S′

n}n≥0 again given by S′
n = Sm+n − Sm, the stopping time

σ ′ = 0 ∨ (σ − m) (for {S′
n}) and the function g′ ∈ Ga now given by g′(n) =

g(m + n) − am, gives, for x > 0,

P
(∃n : 0 < n ≤ (σ ∧ τm

a ) − m,S
g
m+n − Sā

m > x
)

= P
(∃n : 0 < n ≤ σ ′ ∧ τ ′

a, S
′
n > x + g′(n)

)
(30)

≤ (
1 + δa(x)

) ∑
n≥1

P
(
n ≤ (σ ∧ τm

a ) − m
)�F (

x + g(m + n) − am
)

≤ (
1 + δa(x)

) ∑
n≥1

P
(
n ≤ (σ ∧ τm

a ) − m
)�F (

x + g(m + n) − a(m + n)
)
,
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where the last line follows since a > 0. Now replace n by n−m in (30) to complete
the proof as before. �

For any function g on Z+ and any constant a, define the function ga by
ga = g + ā, so that, for each n, ga(n) = g(n) + an.

We require also the following technical lemma.

LEMMA 2. For any σ ∈ T and g ∈ G0, for all 0 < b < c, and for all x ≥ 0,

Hgb

σ (x) ≥ Hgc

σ (x) ≥ b

c
Hgb

σ (x + c).

PROOF. The first inequality follows from the monotonicity of �F . To prove the
second, for any y ∈ R+ define �y� to be the least integer greater than or equal to y.
Then, for 0 < b < c and all y,

c�y� ≤ c(1 + y) ≤ c + b

⌈
c

b
y

⌉
,

and so

Hgc

σ (x) =
∫ ∞

0
P(σ ≥ �y�)�F (

x + c�y� + g(�y�))dy

≥
∫ ∞

0
P

(
σ ≥

⌈
c

b
y

⌉)
�F

(
x + c + b

⌈
c

b
y

⌉
+ g

(⌈
c

b
y

⌉))
dy

= b

c

∫ ∞
0

P(σ ≥ �z�)�F (
x + c + b�z� + g(�z�))dz

= b

c
Hgb

σ (x + c). �

PROOF OF THEOREM 2. We prove first (i). Fix a > 0 and define the sequence
of a.s. finite stopping times 0 ≡ ρ0 < ρ1 < ρ2 < · · · for the process {Sn} by, for
k ≥ 1,

ρk ≡ ρρk−1

a = ρk−1 + min{n ≥ 1 :Sρk−1+n − Sρk−1 > −an}.
Note that Sρk > −aρk , k ≥ 0, that is, that

S−ā

ρk > 0, k ≥ 0.(31)

For any σ ∈ T , g ∈ G0, and for any x > 0, define the stopping time σx by

σx = σ ∧ min{n :Sg
n > x}.
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Then

P(Mg
σ > x) = P

( ⋃
k≥0

{Mg

ρk ≤ x; ∃n :ρk < n ≤ ρk+1, σ ≥ n,Sg
n > x}

)

= ∑
k≥0

P(M
g

ρk ≤ x; ∃n :ρk < n ≤ ρk+1, σ ≥ n,Sg
n > x)

= ∑
k≥0

P(∃n :ρk < n ≤ ρk+1, σx ≥ n,Sg
n > x)

≥ ∑
k≥0

P(∃n :ρk < n ≤ ρk+1, σx ≥ n,Sg
n − S−ā

ρk > x)

≥ (
1 − γa(x)

) ∑
k≥0

∑
n≥1

P(ρk < n ≤ ρk+1, σx ≥ n)�F (
x + g(n) + an

)
= (

1 − γa(x)
) ∑
n≥1

P(σx ≥ n)�F (
x + g(n) + an

)
≥ (

1 − γa(x)
) ∑
n≥1

(
P(σ ≥ n) − P(Mg

σ > x)
)�F (

x + g(n) + an
)
,

where the fourth line in the above display follows by (31), while the fifth follows
from Corollary 1(i) (with γa as defined there). Since also

∑
n≥1

�F(x + g(n) +
an) ≤ ∑

n≥1
�F(x + cn), it follows that

P(Mg
σ > x)

(
1 + ∑

n≥1

�F(x + cn)

)

≥ (
1 − γa(x)

) ∑
n≥1

P(σ ≥ n)�F (
x + g(n) + an

)
(32)

= (
1 − γa(x)

)
Hga

σ (x)

≥ (
1 − γa(x)

) c

c + a
Hg

σ (x + c + a),

where the last line above follows since the condition g ∈ Gc means that we can
apply Lemma 2 to the function g−c ∈ G0.

Observe that, as remarked in the Introduction, since the function F is long-
tailed, the function H

g
σ is similarly long-tailed, with uniform convergence in the

definition (1) over all σ ∈ T and g ∈ Gc. Since also γa(x) → 0 and
∑

n≥1
�F(x +

cn) → 0, both as x → ∞, it now follows from (32) that

P(Mg
σ > x) ≥ (

1 − γ ′
a(x)

)
Hg

σ (x)

for some positive function γ ′
a , again independent of σ and g, such that

lima→0 limx→∞ γ ′
a(x) = 0. The required lower bound (3) now follows, with uni-
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formity over all σ ∈ T and g ∈ Gc, as in the conclusion of the proof of part (i) of
Lemma 1.

We now prove (ii). From the result (i), it is sufficient to show that

P(Mg
σ > x) ≤ (

1 + o(1)
)
Hg

σ (x) as x → ∞,(33)

uniformly over all stopping times σ and all g ∈ Gc. The proof is similar to, but
simpler than, that of (i)—in particular, there is no need to define the stopping
time σx . Fix a ∈ (0, c) and define the sequence of a.s. finite stopping times
0 ≡ τ 0 < τ 1 < τ 2 < · · · for the process {Sn} by, for k ≥ 1,

τ k ≡ τ τk−1

a = τ k−1 + min{n ≥ 1 :Sτk−1+n − Sτk−1 ≤ an}.
Note that Sτk ≤ aτk , k ≥ 0, that is, that

Sā
τk ≤ 0, k ≥ 0.(34)

Then, for any stopping time σ , function g ∈ Gc, and any x > 0,

P(Mg
σ > x) ≤ ∑

k≥0

P(∃n : τ k < n ≤ τ k+1, σ ≥ n,Sg
n > x)

≤ ∑
k≥0

P(∃n : τ k < n ≤ τ k+1, σ ≥ n,Sg
n − Sā

τk > x)

≤ (
1 + δa(x)

) ∑
k≥0

∑
n≥1

P(τ k < n ≤ τ k+1, σ ≥ n)�F (
x + g(n) − an

)
= (

1 + δa(x)
) ∑
n≥1

P(σ ≥ n)�F (
x + g(n) − an

)
= (

1 + δa(x)
)
Hg−a

σ (x),

where the function δa is as defined in Corollary 1(ii) above. Here the second line
in the above display follows by (34), while the third follows from Corollary 1(ii).
Hence, since again g−c ∈ G0, it follows from Lemma 2 that, for x ≥ c,

P(Mg
σ > x) ≤ (

1 + δa(x)
) c

c − a
Hg

σ (x − c).(35)

Note again that H
g
σ is long-tailed, with uniform convergence in the definition (1)

over all σ ∈ T and g ∈ Gc. Hence, again arguing as in the conclusion of the proof
of part (i), we obtain the required upper bound (33) with the required uniformity.

�

REMARK 3. The proof of Theorem 2 is close in spirit to that of Theorem 1
of [23].
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3. Comments, examples and counterexamples. We give a number of
examples and counterexamples, together with some commentary on the case where
P(σ = ∞) > 0. We continue to assume throughout that F ∈ L and that F has mean
zero.

In Examples 1–3, we show the importance of conditions on the functions g.

EXAMPLE 1. Here we show that, even for bounded stopping times, the
functions g cannot decrease too rapidly if we are to obtain uniform convergence
over all g in the conclusion (4). Suppose that F ∈ S, and consider the stopping
time σ ≡ 2. Consider also a sequence of functions {gm}m≥0 such that gm(1) = m

and gm(2) = 0 for all m. Then

P(M
gm

2 > x) ≥ P(S
gm

2 > x) = 2
(
1 + o(1)

)�F(x) as x → ∞,

while

H
gm

2 (x) = �F(x + m) + �F(x).

Hence, as in the discussion following Theorem 2, we obtain the conclusion (4),
with g = gm for each fixed m. However, for any ε > 0 and for all sufficiently
large x,

lim inf
m→∞

P(M
gm

2 > x)

H
gm

2 (x)
≥ 2 − ε,

so that here the conclusion (4) does not hold with uniformity over all m.

EXAMPLE 2. Note that Theorems 1 and 2 extend to cover also functions g

which may take infinite values, provided that the definition (7) of Gc is interpreted
as requiring that if, for any n, g(n) = ∞, then g(n′) = ∞ for all n′ > n.
[A formal proof is given by replacing the stopping time σ by σ ∧ n, where
n = max{n′ :g(n′) < ∞} and using the existing results.]

In a continuation of the spirit of Example 1, suppose again that F ∈ S and
consider now instead a function g satisfying g(1) = ∞ and g(2) = 0. Fix a > 0
and define the stopping time σ by σ = 1 if ξ1 ≤ a and σ = 2 if ξ1 > a. Then, as
x → ∞,

P(Mg
σ > x) = P(ξ1 > a, ξ1 + ξ2 > x)

= P(ξ1 + ξ2 > x) − P(ξ1 ≤ a, ξ1 + ξ2 > x)

= (
1 + o(1)

)(
2�F(x) − F(a)�F(x)

)
= (

1 + o(1)
)(

1 + �F(a)
)�F(x),

where the third line in the above display follows from the definition of subexpo-
nentiality and since also F ∈ L. However,

Hg
σ (x) = �F(a)�F(x),
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so that Theorem 1 will not extend to cover this case.
Now consider an alternative stopping time σ ′ which is independent of {ξn}n≥1

and has the same distribution as σ , that is, P(σ ′ = 1) = F(a) and P(σ ′ = 2) =
�F(a). Then, as x → ∞,

P(M
g

σ ′ > x) = �F(a)P(ξ1 + ξ2 > x) = (
2 + o(1)

)�F(a)�F(x).

Since H
g

σ ′(x) = H
g
σ (x) = �F(a)�F(x), Theorem 1 again fails to extend to this case.

However, this example also shows that, for this function g, the asymptotic distri-
bution of the tail of M

g
σ depends on σ not just through its marginal distribution

(as in the results of Theorems 1 and 2), but through the joint distribution of σ and
{ξn}n≥1. See also [6] who consider a general function g and a.s. constant stopping
times.

EXAMPLE 3. In this example we show that, for a stopping time with
unbounded support, and a function g which increases too slowly, the tail of
P(M

g
σ > x) may be heavier than that of H

g
σ (x). Suppose that g ≡ 0 and that σ is

a random variable, independent of {Sn}n≥0, such that P(σ > n) = (1 + o(1))n−α

as n → ∞, for some α > 1. Suppose also that the distribution F has unit variance.
Then

P(Mg
σ > n) ≥ P(σ > n2)P(Sn2 > n) = (

1 + o(1)
)
cn−2α as n → ∞,

where c = 1√
2π

∫ ∞
1 exp{−t2/2}dt . We also have H

g
σ (x) = Eσ �F(x) for all x ≥ 0.

Thus, if F is additionally such that �F(x) = o(x−2α) as x → ∞, then

P(M
g
σ > x)

H
g
σ (x)

→ ∞ as x → ∞.

The informal explanation here is that, for g ≡ 0, even moderate deviations
contribute to the tail of M

g
σ . For more details on the asymptotics of P(Mn > x)

as n,x → ∞, see [5].

We now consider an example where the conditions of our main Theorem 2 do
hold, and in which σ < ∞ a.s., but Eσ = ∞. In this case, when F ∈ S∗ and g ∈ Gc

for some c > 0, it follows, as in the derivation of (2), that �F(x) = o(P(M
g
σ > x)) as

x → ∞, while, from Theorem 2(ii), we may deduce that P(M
g
σ > x) = o(�F s(x)).

The example below shows that P(M
g
σ > x) may be of any order between �F and �F s .

EXAMPLE 4. Suppose that F (which, as always, is assumed to have mean 0)
is such that

�F(x) = (
1 + o(1)

)
K2x

−β as x → ∞,

for some K2 > 0 and β > 1. Then F ∈ S∗ and

�F s(x) = (
1 + o(1)

)
(β − 1)−1K2x

−β+1 as x → ∞.
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Consider any stopping time σ with a tail distribution given by

P(σ ≥ n) = (
1 + o(1)

)
K1n

−α as n → ∞,(36)

for some K1 > 0 and 0 < α < 1. (E.g., since F has finite variance, the
distribution of the stopping time σ = min{n :Sn > 0} satisfies P(σ ≥ n) = (1 +
o(1))Kn−1/2 for some K ∈ (0,∞)—see [13], Chapter 12.) Then Eσ = ∞ and, by
Theorem 2(ii), for any c > 0 and as x → ∞,

P(Mc̄
σ > x) = (

1 + o(1)
) ∑
n≥1

P(σ ≥ n)�F(x + cn)(37)

= (
1 + o(1)

)
K1K2

∑
n≥1

n−α(x + cn)−β(38)

= (
1 + o(1)

)
K1K2

∫ ∞
0

t−α(x + ct)−β dt

= (
1 + o(1)

)
Cx1−α−β,

where

C = K1K2c
α−1

∫ ∞
0

u−α(1 + u)−β du,

and where (38) follows from (36) and (37) since the condition Eσ = ∞ implies
that the contributions, as x → ∞, of any finite number of the summands in
(37) and (38) may be neglected.

In the case where F has a Weibull distribution, that is, �F(x) = (1 +
o(1)) exp(−xβ) as x → ∞, for some β ∈ (0,1), then �F s(x) = (1+o(1))K1x

1−β ×
exp(−xβ) as x → ∞. For the stopping time σ as above and for c > 0, it follows
similarly that

P(Mc̄
σ > x) = (

1 + o(1)
)
K2x

(1−α)(1−β) exp(−xβ) as x → ∞,

for some K2 > 0.

We now discuss briefly the extent to which it is necessary that σ should be a
stopping time for the sequence {ξn}n≥0 in order for our main results to hold.

In Example 5 we indicate briefly why some such condition is necessary.

EXAMPLE 5. Let a > 0 and define σ = min{n :Sn > a} − 1. Then, for any
nonnegative function g, P(M

g
σ > x) = 0 for all x ≥ a.

Now suppose again that a > 0 and consider the alternative stopping time
σ = min{n : ξn > a} − 1. Then by conditioning on each possible value of σ and
evaluating P(M

g
n > x|σ = n), one can straightforwardly show that P(M

g
σ > x) ≤

c exp(−λx), for some constants c > 0 and λ > 0, so that here the distribution of
M

g
σ is again light-tailed, in contrast to the long tail of H

g
σ .
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We now give, with some explanation, an example in which, although σ is not a
stopping time for the sequence {ξn}n≥0, the equivalence (3) nevertheless holds.

EXAMPLE 6. Let {sn}n≥1 and {tn}n≥1 be two independent sequences of
independent identically distributed random variables. Suppose that s1 ∈ S with
Es1 = a, and that t1 ≥ 0 a.s., with Et1 = b > 0. Let T > 0 be fixed, let η =
min{n : t1 + · · · + tn > T }, and let σ = η − 1.

Let c = b − a and define the sequence of independent identically distributed
random variables {ξn}n≥1, with distribution F , by ξn = sn − tn + c. Then, since
t1 is nonnegative and independent of s1 ∈ S, it follows easily that ξ1 is tail-
equivalent to s1, and so also ξ1 ∈ S and Eξ1 = 0. As usual, let S0 = 0, Sn =∑n

i=1 ξi , n ≥ 1, be the random walk generated by the sequence {ξn}n≥1. Then
Mc̄

σ = max0≤n≤σ

∑n
i=1(si − ti) might, for example, be interpreted as the maximum

loss to time T of an insurance company with income at unit rate and a claim of
size sn at each time tn. Note that, clearly, E exp(λσ) < ∞ for some λ > 0. Also
σ is not a stopping time for the random walk {Sn}n≥0. However,

sup
n≤σ

n∑
i=1

si − T ≤ Mc̄
σ ≤ sup

n≤σ

n∑
i=1

si .(39)

Since T is fixed, σ is independent of the sequence {sn}n≥1, and s1 and ξ1 are
tail-equivalent, it follows from (39) and Theorem A 3.20 of [11], that, for any c,

P(Mc̄
σ > x) = (

1 + o(1)
)
Hc̄

σ (x) = (
1 + o(1)

)
Eσ �F(x) as x → ∞,(40)

which is the equivalence (4) in this case. In the case F ∈ S∗ and c > 0, we may
go further and use Theorem 2(ii) of the present paper to obtain uniformity over
all T in the first equality in (40). See [18] for some further particular results on
this model.

Note that the result follows here since σ is a stopping time with respect to the
sequence {sn}n≥1. In an intuitive sense (which might be made rigorous) the result
also follows since, for each n, the event {σ ≤ n} is independent of the tails of the
sequence ξn+1, ξn+2 . . . , and this is what is really required for our present results
to hold.

Note also that the independence of the sequences {sn}n≥1 and {tn}n≥1 is vital.
Consider instead a sequence {ξn}n≥1 of independent identically distributed random
variables with distribution F ∈ S∗ and mean 0, and define the sequences {sn}n≥1
and {tn}n≥1 by sn = max{ξn,0} and tn = −min{ξn,0}. Define T , η and σ as above.
Then ξη ≤ 0 a.s. and, for the random walk {Sn}n≥0 generated by {ξn}n≥1 and any
c > 0, we have Mc̄

σ ≡ Mc̄
η . Since η is a stopping time for {Sn}n≥0, it now follows

from Theorem 2(ii) that

P(Mg
σ > x) = (

1 + o(1)
)
Eη�F(x) = (

1 + o(1)
)
(Eσ + 1)�F(x) as x → ∞.
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EXAMPLE 7. Finally, we consider further the case of a stopping time σ such
that p = P(σ = ∞) > 0. Recall that if F ∈ S∗, then both F ∈ S and F s ∈ S.
Provided only that F s ∈ S (we do not here require our usual minimal assumption
that F ∈ L), and mF = 0 as usual, then relatively straightforward arguments can
be used to show that, in this case and for c > 0, the equivalence (4) continues to
hold, and that, as x → ∞,

P(Mc̄
σ > x) = (

1 + o(1)
)
P(σ = ∞)P(Mc̄∞ > x)

= (
1 + o(1)

)
Hc̄

σ (x)(41)

= (1 + o(1))p

c
�F s(x).

However, under this weaker condition, we cannot expect any uniformity in either
σ or c.

In the case where p = 1 (i.e., σ = ∞ a.s.), the result (41) is the well-known
theorem of Veraverbeke [19] referred to in the Introduction.

APPENDIX

Recall that, for any stopping time σ and nonnegative function g, the func-
tion H

g
σ is defined by

Hg
σ (x) = ∑

n≥1

P(σ ≥ n)�F (
x + g(n)

)
.

It is convenient to have a condition under which, for some purposes, we may
replace the above sum by an integral.

Assume that, for g ∈ G0, the definition of the function g is extended to all
of R+ in such a way that g continues to be increasing. For any such g, define
the function vg on R+ by

vg(x) = sup
n≥1

�F(x + g(n − 1))

�F(x + g(n))
,

where g(0) = 0. For any stopping time σ and g ∈ G0, define also the function Ĥ
g
σ

by

Ĥ g
σ (x) =

∫ ∞
0

P(σ > t)�F (
x + g(t)

)
dt.

Then, since g is increasing and σ is integer-valued, for all x ∈ R+,

Hg
σ (x) ≤ Ĥ g

σ (x)

≤ ∑
n≥1

P(σ ≥ n)�F (
x + g(n − 1)

)
≤ vg(x)Hg

σ (x).



1956 S. FOSS, Z. PALMOWSKI AND S. ZACHARY

It follows, in particular, that if

vg(x) → 1 as x → ∞,(42)

then also H
g
σ (x) = (1 + o(1))Ĥ

g
σ (x) as x → ∞.

Since F ∈ L, the condition (42) holds for g = c̄ [i.e., g(n) = cn] for any
constant c ≥ 0 (although observe that it does not hold with uniformity over all
c ≥ 0). More generally, the condition (42) holds for g ∈ G0 if g(n) − g(n − 1) ≤
h(g(n)) for some function h satisfying (11).
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