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The asymptotic tail behaviour of sums of independent subexponential random variables is well understood, one of the main
characteristics being the principle of the single big jump. We study the case of dependent subexponential random variables,
for both deterministic and random sums, using a fresh approach, by considering conditional independence structures on the
random variables. We seek sufficient conditions for the results of the theory with independent random variables to still hold.
For a subexponential distribution, we introduce the concept of a boundary class of functions, which we hope will be a useful
tool in studying many aspects of subexponential random variables. The examples we give demonstrate a variety of effects
owing to the dependence, and are also interesting in their own right.
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1. Introduction. Finding the asymptotic tail behaviour of sums of heavy-tailed random variables is an
important problem in finance, insurance, and many other disciplines. The case when the random variables are
independent and subexponentially distributed has been extensively studied and is well understood. The key idea
is that such a sum will exceed a high threshold because of a single, very large jump; following other authors we
shall refer to this as the principle of the single big jump. However, for many practical purposes the independence
assumption is too restrictive. In recent years, many authors have developed results in this area (see, for example,
Albrecher et al. [1], Alink et al. [2], Denuit et al. [8], Goovaerts et al. [12], Kortschak and Albrecher [14], Ko
and Tang [15], Laeven et al. [16], Mitra and Resnick [17], Tang [19], Tang and Tsitsiashvili [20], and references
therein). Denuit et al. [8] constructed bounds for these sums, but did not consider asymptotics. Goovaerts et al.
[12] considered the situation of dependent random variables with regularly varying tails; there have also been
results on negative dependence for various classes of subexponential distributions (see, for example Tang [19])
and for dependence structures that are “not too positive” (see Ko and Tang [15]).
Once we drop the requirement of independence, two questions naturally arise. First, what kind of behaviours

can occur as the dependence between the random variables strengthens? And secondly, how far beyond the
independent case does the principle of the single big jump still hold? These questions are of real interest, both
from theoretical and practical viewpoints.
Albrecher et al. [1] consider the first question for the sum of two dependent random variables. Their approach,

as for many authors, is to study the possible effects of the dependence by considering the copula structure.
They demonstrate that many possible behaviours naturally occur, and that, in some specific cases the principle
of the single big jump is insensitive to the strength of the copula structure. Other papers that concentrate on the
copula structure include Alink et al. [2] and Kortschak and Albrecher [14]. Mitra and Resnick [17] investigate
random variables belonging to the maximum domain of attraction of the Gumbel distribution and which are
asymptotically independent. The results we present contain overlap with all these approaches, but we neither
impose a particular dependence structure, nor a particular distribution for the random variables, beyond the
necessary constraint that at least one be subexponential.
We wish to consider the second question, and to establish conditions on the strength of the dependence

which will preserve the results of the theory established for independent random variables; in particular, the
principle of the single big jump. This principle is well known. However, we would like to examine it again
from a probabilistic point of view by considering the sum of two identically distributed subexponential random
variables X1, X2.

P�X1+X2 > x� = P�X1 ∨X2 > x�+P�X1 ∨X2 ≤ x� X1+X2 > x�
= P�X1 > x�+P�X2 > x�−P�X1 ∧X2 > x�+P�X1 ∨X2 ≤ x� X1+X2 > x�
�= P�X1 > x�+P�X2 > x�−P2�x�+P1�x�� (1)
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where X1∨X2 =max�X1�X2� and X1∧X2 =min�X1�X2�. If P1�x� is negligible compared to P�X1 > x�, which
in the independent case follows from the definition of subexponentiality, we shall say that we have the principle
of the big jump. If, in addition, P2�x� is negligible compared to P�X1 > x�, as again is straightforward in the
independent case, then we shall say that we have the principle of the single big jump. If the dependence is
very strong, for instance if X1 =X2 a.s. (almost surely), then clearly the principle of the single big jump fails.
We shall see in Example 3 a more interesting example where the principle of the big jump holds, but not the
principle of the single big jump; but nonetheless a high level is exceeded because of a single big jump a positive
fraction of the time.
We consider sums of random variables that are conditionally independent on some sigma algebra. This is a

fresh approach to studying the effect of dependence on subexponential sums and allows a great deal of generality
(in particular, we need neither specify a particular subclass of subexponential distribution for which our results
hold, nor assume the summands are identically distributed, nor specify any particular copula structure). We
believe this is a fruitful line of enquiry, both practically and theoretically, as the range of examples we give
illustrates.
Clearly, any sequence of random variables can be considered to be conditionally independent by choosing

an appropriate sigma algebra on which to condition. This is an obvious observation, and in itself not really
helpful. However, there are practical situations where a conditional independence structure arises naturally from
the problem. As an example, consider a sequence of identical random variables X1�X2� 	 	 	 �Xn, each with
distribution function F� depending on some parameter � that is itself drawn from a different distribution. The
Xi are independent once � is known: this is a typically Bayesian situation. It is natural to view the Xi as
conditionally independent on the sigma algebra generated by �. We suppose the Xi to have subexponential
(unconditional) distribution F and ask under what conditions the distribution of the sum follows the principle
of the single big jump.
In addition to the assumption of conditional independence, we assume that the distributions of our random

variables are asymptotically equivalent to multiples of a given reference subexponential distribution (or more
generally we can assume weak equivalence to the reference distribution). This allows us to consider nonidentical
random variables. As an example, developed fully in Example 4, which follows ideas in Laeven et al. [16], we
consider the problem of calculating the discounted loss reserve; this can also be viewed as finding the value
of a perpetuity. Let the i.i.d. sequence X1�X2� 	 	 	 �Xn denote the net losses in successive years, and the i.i.d
sequence V1� 	 	 	 � Vn denote the corresponding present value discounting factors, where the two sequences are
mutually independent. Then Yi =Xi�ij=1Vj represents the present value of the net loss in year i, and Sn =�ni=1Yi
is the discounted loss reserve. Conditional on ��V1� 	 	 	 � Vn� the random variables Yi are independent. Let the
(unconditional) distribution function of Yi be Fi. We suppose there is a reference subexponential distribution F
and finite constants c1� 	 	 	 � cn, not all zero, such that, for all i= 1�2� 	 	 	 � n,

lim
x→	


Fi�x�

F �x� = ci�

We seek conditions on the dependence which will ensure that the principle of the single big jump holds for the
discounted loss reserve.
More generally, we want to consider both deterministic sums and randomly stopped sums, where the stopping

time � is independent of the Xi and has light-tailed distribution.
Foss et al. [11] studied time modulated random walks with heavy-tailed increments. In their proofs of two

key theorems (Theorems 2.2 and 3.2) they used a coupling argument involving the sum of two conditionally
independent random variables that entailed proving a lemma (Lemma A.2) which considered a particular case
of conditional independence. The investigation in the present paper considers this problem in much greater
generality, whilst retaining the flavour of the simple situation in Foss et al. [11].
The statements of the propositions that we prove in §2 therefore hold no surprises, and indeed, once the

conditions under which these propositions hold were determined, the proofs followed relatively straightforwardly
with no need for complicated machinery. The interest and effort was in the formulation of the conditions in the
first place, which constituted the major intellectual work in this paper, and in finding means by which these
conditions could be efficiently checked.
A very useful tool in the study of subexponential distributions is the class of functions which reflect the fact

that every subexponential distribution is long-tailed. For a given subexponential distribution F this is the class
of functions hF , such that whenever h ∈ hF , h is monotonically tending to infinity, and

lim
x→	


F �x−h�x��

F �x� = 1� (2)
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A quantity that occurs often in the study of such distributions is

∫ x−h�x�

h�x�


F �x− y�F �dy��

for any h satisfying (2). The importance of this stems from the fact that this quantity is negligible compared to

F �x� as x→	:

lim
x→	

∫ x−h�x�

h�x�


F �x− y�

F �x� F �dy�= 0� (3)

Intuitively this means that, when considering the probability that the sum of two i.i.d. subexponential random
variables exceeds some high level x, the probability that both of them are of “intermediate” size is negligible
compared to the probability that exactly one of them exceeds x. Because of the form of the integral, it is
convenient only to consider those functions h which satisfy h�x� < x/2.
It is clear that if h1�x� belongs to the class hF , then any h2�x�≤ h1�x� also satisfies (2). For many long-tailed

functions a boundary class of functions, � , exists such that the statement h ∈ hF is equivalent to h�x�= o�H�x��
for every H ∈ � . This boundary class is particularly useful in dealing with expressions such as that in (3). In
these types of expressions we need to find a suitable function h, but the class of functions satisfying the long-tail
property (2) is very rich, and finding an appropriate function can be difficult. We note that if we have found an
appropriate h1 satisfying (3), then any other h2 in the same class such that h2�x� > h1�x� will also satisfy (3);
we call this increasing function behaviour. We show that in cases where the boundary class exists, for any
property that exhibits this increasing function behaviour, the property is satisfied for some function h ∈ hF if
and only if the property is satisfied for all functions in the boundary class. Furthermore, because all functions
in the boundary class are weakly equivalent (see §3 for precise definitions and statements) it suffices to verify
such a property only for multiples of a single function. We hope that this technical tool will be of use to other
researchers.
We give a wide range of examples of collections of random variables, some satisfying the principle of the

single big jump, some not, and we suggest that these examples are of independent interest in and of themselves.
The paper is structured as follows. In §2 we formulate our assumptions, then state and prove our main

results for conditionally independent nonnegative random variables satisfying the principle of the single big
jump, leaving the more general case of real-valued random variables to §5. In §3 we introduce the concept of
the Boundary Class for long-tailed distributions, and give some typical examples. In §4 we give examples of
conditionally independent subexponential random variables, some of which satisfy the principle of the single
big jump, and one of which does not. In §5 we extend our investigation to any real-valued subexponential
random variables. This involves imposing an extra condition. We give an example that shows that this condition
is nonempty and necessary. Finally, in §6 we collect together the different notation we have used, and also give
definitions of the standard classes of distributions (heavy-tailed, long-tailed, subexponential, regularly varying,
and so on) that we use in this paper.

2. Main definitions, results, and proofs. A distribution function F supported on the positive half-line is
subexponential if and only if


F ∗2�x� �=
∫ x

0


F �x− y�F �dy�+ 
F �x�∼ 2 
F �x��

It is known (see, for example, Foss and Zachary [10]), and may be easily checked, that a distribution supported
on the positive half-line is subexponential if and only if the following two conditions are met:
(i) F is long-tailed. That is, there exists a nondecreasing function h�x�, tending to infinity, such that (2)

holds.1 (Examples include: for F regularly varying (see §6.2 for definition), then we can choose h�x� = x�,
where 0<�< 1; for F Weibull, with parameter 0<�< 1, we can choose h�x�= x�, where 0<�< 1−�.)
(ii) For any h�x� < x/2 tending monotonically to infinity,

∫ x−h�x�

h�x�


F �x− y�F �dy�= o� 
F �x��� (4)

1 We observe that, given a random variable X with subexponential distribution F , the function h measures how light, compared to X, the
distribution of a random variable Y must be so that the tail distribution of the sum X + Y is insensitive to the addition of Y , not assumed
to be independent of X. In particular, if P�Y > h�x��= o� 
F �x��, then P�X+ Y > x�∼ P�X > x� regardless of how strong any dependence
between X and Y is. In the case of regular variation, this comment is originally from Klüppelberg [13].
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We work in a probability space � �� �P�. Let Xi, i = 1�2� 	 	 	 , be nonnegative random variables with
distribution function (d.f.) Fi. Let F be a subexponential reference distribution concentrated on the positive half-
line and let h be a function satisfying the long-tailed condition (2). Let � be a �-algebra, �⊂� . We make the
following assumptions about the dependence structure of the Xi’s:
(D1) X1�X2� 	 	 	 are conditionally independent given �. That is, for any collection of indices !i1� 	 	 	 � ir #,

and any collection of sets !Bi1� 	 	 	 �Bir #, all belonging to � , then P�Xi1 ∈ Bi1� 	 	 	 �Xir ∈ Bir � �� =
P�Xi1 ∈ Bi1 ���P�Xi2 ∈ Bi2 ��� · · ·P�Xir ∈ Bir ����
(D2) For each i ≥ 1, 
Fi�x�∼ ci 
F �x�, with at least one ci �= 0; and for all i ≥ 1, there exists c > 0 such that
Fi�x�≤ c 
F �x� for all x > 0.
(D3) For each i≥ 1 there exists a nondecreasing function r�x� and an increasing collection of sets Bi�x� ∈�,

with Bi�x�→ as x→	, such that

P�Xi > x ���1�Bi�x��≤ r�x� 
F �x�1�Bi�x�� almost surely� (5)

and, as x→	, uniformly in i,
(i) P� 
Bi�h�x���= o� 
F �x��,
(ii) r�x� 
F �h�x��= o�1��
(iii) r�x�

∫ x−h�x�
h�x�


F �x− y�F �dy�= o� 
F �x���
Remark 2.1. In many cases the dependence between the !Xi# enables us to choose a common B�x�= Bi�x��

for all i. However, we allow for situations where this is not the case. There is no need for a similar generality
in choice of the function r�x� because of the uniformity in i. The function r�x� can be chosen so that it
is only eventually monotone increasing, and in the case where we are only considering a finite collection of
random variables !Xi# it is sufficient to show that the chosen function is asymptotically equivalent to a monotone
increasing function.
Remark 2.2. If the collection of r.v.’s of interest is finite, then clearly the uniformity in i needed in conditions

(D2) and (D3) is guaranteed.
Remark 2.3. If the reference distribution F has a tail that is intermediately regularly varying (see §6.2

for definitions), then it will be shown later that we can check that the conditions (D3) hold for some h�x�
satisfying (2) by verifying that the conditions hold when h�x� is replaced by all the functions H�x�= cx where
0< c < 1/2.
Remark 2.4. It will sometimes be the case that the random variables X1�X2� 	 	 	 , are not identically dis-

tributed, and are not all asymptotically equivalent to the reference distribution F . In these cases it is sufficient
to require that they are weakly equivalent to F (see §6.1 for the definition of weak equivalence), and that they
are subexponentially distributed. The uniformity condition will still be required.
Remark 2.5. The need for and the meaning of the bounding functions r�x� and the bounding sets Bi�x�

will become apparent when we give some examples. However, some preliminary comments may assist at this
stage.
• To preserve the desired properties from the independent scheme, we need to ensure that the influence of

the �-algebra � that controls the dependence is not too strong. This we have done by introducing the bounding
function r�x� for the ith random variable, which ensures that there are no events in � that totally predominate
if a high level is exceeded. Although r�x� may tend to infinity, it must not do so too quickly.
• Depending on the nature of the interaction of � with the random variables, there may be events in � that

do overwhelmingly predominate when exceeding a high level; this is not a problem as long as these events are
unlikely enough and their probability tends to zero as the level tends to infinity. Within the bounding sets Bi�x�
no events in � predominate, and we then require that the compliments 
Bi�x� decay quickly enough.
We have the following results.

Proposition 2.1. Let Xi, i = 1�2� 	 	 	 , satisfy conditions (D1), (D2), and (D3) for some subexponential F
concentrated on the positive half-line and for some h�x� satisfying (2). Then

P�X1+ · · ·+Xn > x�∼
n∑
i=1
P�Xi > x�∼

( n∑
i=1
ci

)

F �x��

Remark 2.6. Lemma A.2 in Foss et al. [11] follows directly from this proposition.
To use dominated convergence to generalize Proposition 2.1 to random sums, we need the following extension

of Kesten’s lemma.
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Lemma 2.1. With the conditions of (D1), (D2), and (D3), for any % > 0 there exist V �%� > 0 and x0 = x0�%�
such that, for any x > x0 and n≥ 1,

P�Sn > x�≤ V �%��1+ %�n 
F �x��
Proposition 2.2. If, in addition to the conditions of (D1), (D2), and (D3), � is an independent counting

random variable such that E�e'�� <	 for some ' > 0, then

P�X1+ · · ·+X� > x� ∼ E
( �∑
i=1
P�Xi > x�

)

∼ E
( �∑
i=1
ci

)

F �x��

Clearly, checking that (D3(ii)) and (D3(iii)) hold is the most laborious part of guaranteeing the conditions
for these propositions. Hence we propose a sufficient condition, analogous to the well-known condition for
subexponentiality.

Proposition 2.3. Let F be a subexponential distribution concentrated on the positive half-line, let h�x� be a
function satisfying (2), and let r�x� be a nondecreasing function. Let Q�x� �=− log� 
F �x��, the hazard function
for F , be concave for x≥ x0, for some x0 <	. Let

xr�x� 
F �h�x��→ 0 as x→	� (6)

Then conditions (D3(ii)) and (D3(iii)) are satisfied.

Before we can give examples of our conditions in practice, we need to address a specific issue. The conditions
depend on being able to choose bounding functions r�x� and bounding sets Bi�x�, which themselves depend on
our choice of the little-h function satisfying (2). The choice of h�x� is not unique, so the fact that one is unable
to find appropriate bounding functions and sets for a particular little-h function does not imply that one cannot
find them for some other choice of h. This is the problem we address in the next section.
Now we proceed with the proofs of our results.
Proof of Proposition 2.1. First, consider X1+X2. Assume, without loss of generality, that c1 > 0. Let Y

be a random variable, independent of X1 and X2 with distribution function F . We have the inequalities

P�X1+X2 > x� ≤ P�X1 > x−h�x��+P�X2 > x−h�x��
+P�h�x� <X1 ≤ x−h�x�� X2 > x−X1��

and
P�X1+X2 > x�≥ P�X1 > x�+P�X2 > x�−P�X1 > x� X2 > x��

Now,

P�h�x� <X1 ≤ x−h�x�� X2 > x−X1�
=E�P�h�x� <X1 ≤ x−h�x�� X2 > x−X1 ����
=E

(∫ x−h�x�

h�x�
P�X1 ∈ dy ���P�X2 > x− y ����1�B2�x− y��+ 1� 
B2�x− y���

)

≤ r�x�E
(∫ x−h�x�

h�x�
P�X1 ∈ dy ���P�Y > x− y�

)
+E�1� 
B2�h�x����

= r�x�
∫ x−h�x�

h�x�
P�X1 ∈ dy� 
F �x− y�+ o� 
F �x��

= o� 
F �x���
Also,

P�X1 > x� X2 > x� = E�P�X1 > x� X2 > x ����1�B2�x��+ 1� 
B2�x����
≤ E�P�X1 > x ���P�X2 > x ���1�B2�x���+E�1� 
B2�x���
≤ r�x� 
F �x�P�X1 > x�+ o� 
F �x��
= o� 
F �x���
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Hence, P�X1+X2 > x�∼ P�X1 > x�+P�X2 > x�. Since c1 > 0, then P�X1 > x�+P�X2 > x�∼ �c1+c2� 
F �x�.
Then, by induction, we have the desired result. �

Proof of Lemma 2.1. The proof follows the lines of the original proof by Kesten. Again, let Y be a random
variable, independent of X1 and X2, and with distribution function F . For x0 ≥ 0, which will be chosen later,
and k≥ 1, put

*k = *k�x0� �= sup
x>x0

P�Sk > x�

F �x� �

Also observe that

sup
0<x≤x0

P�Sk > x�

F �x� ≤ 1


F �x0�
�= *�

Take any % > 0. Recall that for all i > 0, 
Fi�x�≤ c 
F �x�, for some c > 0 and for all x > 0. Then, for any n> 1,
P�Sn > x� = P�Sn−1 ≤ h�x�� Xn > x− Sn−1�

+P�h�x� < Sn−1 ≤ x−h�x�� Xn > x− Sn−1�
+P�Sn−1 > x−h�x�� Xn > x− Sn−1�

≡ P1�x�+P2�x�+P3�x��
We bound

P1�x�≤ P�Xn > x−h�x��≤ cL�x0� 
F �x�
and

P3�x�≤ P�Sn−1 > x−h�x��≤ *n−1L�x0� 
F �x�
for x≥ x0, where L�x�= supy≥x� 
F �y−h�y��/� 
F �y���.
For P2�x�,

P2�x� = P�h�x� < Sn−1 ≤ x−h�x��Xn > x− Sn−1�
= E

(∫ x−h�x�

h�x�
P�Sn−1 ∈ dy ���P�Xn > x− y ����1�Bn�x− y��+ 1� 
Bn�x− y���

)

≤ E
(
r�x�

∫ x−h�x�

h�x�
P�Sn−1 ∈ dy ���P�Y > x− y�

)
+P� 
Bn�h�x���

= r�x�
∫ x−h�x�

h�x�
P�Sn−1 ∈ dy�P�Y > x− y�+P� 
Bn�h�x���

≤ r�x�
(∫ x−h�x�

h�x�
P�Y ∈ dy�P�Sn−1 > x− y�+P�Sn−1 >h�x��P�Y > x−h�x��

)
+P� 
Bn�h�x���

≤ �*n−1+*�r�x�
(∫ x−h�x�

h�x�
P�Y ∈ dy�P�Y > x− y�+P�Y > h�x��P�Y > x−h�x��

)
+P� 
Bn�h�x���

= �*n−1+*�
(
r�x�

∫ x−h�x�

h�x�


F �x− y�

F �x� F �dy�+ r�x� 
F �h�x�� 
F �x−h�x��

)
+P� 
Bn�h�x����

We now choose x0 such that, for all x≥ x0,

F �x−h�x��


F �x� ≤ L�x0�≤ 1+
%

4
�

r�x�
∫ x−h�x�

h�x�


F �x− y�

F �x� F �dy�≤ %

4
�

r�x� 
F �h�x��L�x0�≤
%

4
�

P� 
Bn�h�x���

F �x� ≤ 1�
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which can be done by virtue of the long-tailedness of F and conditions (D3). We then have that

P2�x�≤
%

2
�*n−1+*� 
F �x�+ 
F �x��

We therefore have

P�Sn > x� ≤ cL�x0� 
F �x�+
%

2
�*n−1+*� 
F �x�+ 
F �x�+*n−1L�x0� 
F �x�

≤ R 
F �x�+
(
1+ 3

4
%
)
*n−1 
F �x��

for some 0<R<	. Hence,
*n ≤R+

(
1+ 3

4
%
)
*n−1�

Then, by induction, we have

*n ≤ *1
(
1+ 3

4
%
)n−1+Rn−2∑

r=0

(
1+ 3

4
%
)r

≤ Rn
(
1+ 3

4
%
)n−1

≤ V �%��1+ %�n�
for some constant V �%� depending on %.
This completes the proof. �

Proof of Proposition 2.2. The proof follows directly from Proposition 2.1, Lemma 2.1, and the dominated
convergence theorem. �

Before proving Proposition 2.3, we prove the following lemma, which was originally used without proof in
Denisov et al. [7].

Lemma 2.2. Let F be long-tailed and concentrated on the positive real line. Then there exists a constant
C > 0 such that for any b > a> 0,∫ b

a


F �x− y�F �dy�≤C
∫ b

a


F �x− y� 
F �y�dy�
Proof of Lemma 2.2. Let y0 = a, s = 1b− a2+ 1, and yi = yi−1+ �b− a�/s, i= 1�2� 	 	 	 � s. Then ys = b.
There exists a constant C such that for any y > 0, 
F �y�/� 
F �y+ 1��≤√

C <	 since F is long-tailed. Then
∫ b

a


F �x− y�F �dy� =
s−1∑
n=0

∫ yn+1

yn


F �x− y�F �dy�

≤
s−1∑
n=0

∫ yn+1

yn


F �x− yn+1�� 
F �yn�− 
F �yn+1��dy

≤
s−1∑
n=0

∫ yn+1

yn

√
C 
F �x− y� 
F �yn�dy

≤
s−1∑
n=0

∫ yn+1

yn

C 
F �x− y� 
F �y�dy

= C
∫ b

a


F �x− y� 
F �y�dy� �

Proof of Proposition 2.3. Without loss of generality we may assume that x0 = 0. Clearly (6) implies
that condition (D3(ii)) holds. Since g is concave, the minimum of the sum g�x − y� + g�y� on the interval
1h�x�� x−h�x�2 occurs at the endpoints of the interval. From Lemma 2.2, there exists a constant C > 0 such that∫ x−h�x�

h�x�


F �x− y�F �dy� ≤ C
∫ x−h�x�

h�x�


F �x− y� 
F �y�dy

= C
∫ x−h�x�

h�x�
exp�−�Q�x− y�+Q�y���dy

≤ Cx exp�−�Q�h�x��+Q�x−h�x����
= Cx 
F �h�x�� 
F �x−h�x���
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and so

r�x�
∫ x−h�x�

h�x�


F �x− y�

F �x� F �dy� ≤ Cxr�x� 
F �h�x�� 
F �x−h�x��
F �x�

= o�1��
Therefore, condition (D3(iii)) also holds. �

3. The boundary class. The conditions (D3(i)), (D3(ii)), and (D3(iii)) depend on being able to choose
a suitable little-h function for the distribution F . It is convenient to define hF as the class of nondecreasing
functions h�x� defined on the positive reals such that 0< h�x� < x/2 and h�x�→	 as x→	 and such that
the long-tailed property (2) holds for F . There is a problem in that being unable to find a suitable function r�x�
and bounding sets Bi�x� for a particular little-h function does not mean that these objects cannot be found for
some other little-h function. The class hF is usually very rich, and so it may be difficult to find a suitable little-h
function. However, if h1�x� belongs to the appropriate class of functions and satisfies the three conditions in
(D3), and h2, belonging to the same class, is such that h2�x� > h1�x� for all x > x0, for some x0, then h2�x�
also satisfies the three (D3) conditions.
This property of the (D3) conditions, which we refer to as an increasing function property (defined precisely

below), allows us to construct a boundary class of functions. Functions in the boundary class do not satisfy
the little-h condition, but any function that is asymptotically negligible with respect to any function in the
boundary class will be in hF . We show that all functions in the boundary class are weakly equivalent (written
H1�x��H2�x�; see notations in §6.1). This means that the boundary class can be generated by a single function
H�x�, and all multiples of H�x�.
We will show that if the (D3) conditions are satisfied for all multiples of H�x�, then they are satisfied for

some h�x� belonging to the little-h class of functions, without having to find the little-h function. A generator
for the boundary class is usually easy to find, and almost trivial for absolutely continuous distributions.

3.1. Definition and properties. First we define precisely what we mean by an increasing (or decreasing)
function property.
Definition 3.1. A property depending on a function h, where h belongs to some class of functions, is said

to be an increasing (decreasing) function property if when the property is satisfied for h1, then it is satisfied by
any other function h2 in the class such that h2�x� > h1�x�, (h2�x� < h1�x�), for all x > x0, for some x0.
We observe that the property of long-tailedness (2) is a decreasing function property. We want to describe its

upper boundary, when it exists.
Definition 3.2. Let F be a long-tailed distribution. The boundary class (for F ), � , consists of all continu-

ous, nondecreasing functions H�x� such that h�x� ∈ hF if and only if h�x�= o�H�x��.
Remark 3.1. In most cases the boundary class for a long-tailed distribution does exist; however, we note

that slowly varying functions do not have a boundary class as all nondecreasing functions h�x� defined on the
positive reals such that 0<h�x� < x/2 and h�x�→	 as x→	 can act as little-h functions satisfying (2).
We examine the structure of the boundary class � , and show that all functions in � are weakly tail equivalent.

Proposition 3.1. Let H1�x� belong to the boundary class � . Then H2�x� ∈� if and only if H2�x��H1�x�.
Proof. Clearly, if H2�x� � H1�x�, then H2�x� ∈ � . So, consider a function H2�x� for which

lim inf�H2�x�/�H1�x��� = 0. We shall construct a function h1�x� with the long-tail property (2) which is not
o�H2�x��. There exists a sequence, tending to infinity, 0 = x0 < x1 < · · · , and such that the sequence %n �=
H2�xn�/�H1�xn�� is decreasing, %1 < 1, and limn→	 %n = 0.
Let h1�x�=H2�x� for x < x1 and let, for n≥ 1 and for x ∈ 1xn� xn+1�,

h1�x�=H2�xn�+ �H1�x�−H1�xn�� ·
H2�xn+1�−H2�xn�
H1�xn+1�−H1�xn�

�

Clearly, h1�xn�=H2�xn� for any n≥ 1 and h1�x� is continuous and nondecreasing. Also, for x ∈ 1xn� xn+1�,

h1�x�≤ %nH1�xn�+ �H1�x�−H1�xn��
%n+1H1�xn+1�− %nH1�xn�
H1�xn+1�−H1�xn�

≤ %nH1�x��

so, h1�x�= o�H1�x�� as x→	. Therefore h1�x� satisfies the long-tail property, but lim sup�h1�x�/�H2�x���≥ 1,
so H2�x� � � . We can clearly repeat this argument if lim inf�H1�x�/�H2�x��� = 0. Hence, if H2�x� ∈ � , then
H2�x��H1�x�. �
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The three conditions in (D3) depend on a little-h which satisfies (2). The next proposition will show that if
the three conditions (D3) are satisfied by all functions in the boundary class � , then they are satisfied by at least
one h in the long-tail class. Because all functions in � are weakly-tail equivalent, it will then be sufficient to
show that the conditions (D3) hold for all multiples !cH�x�4 c ∈�+� cH�x� < x/2# of any particular function
H ∈� . We shall then say that H�x� generates the boundary class � .
Before proceeding, we define, for any function f �x�,

�f �x�= sup
i

(
max

(
P� 
Bi�f �x���


F �x� � r�x� 
F �f �x���
∫ x−f �x�

f �x�


F �x− y�

F �x� F �dy�

))
�

Then the three conditions in (D3) are equivalent to

lim
x→	�h�x�= 0� (7)

Proposition 3.2. Let F be a distribution function having a boundary class � . Then there exists some
function h�x� ∈ hF satisfying (7) if and only if (7) holds for every cH�x� in place of h�x�, where c > 0 and
cH�x� < x/2, where H�x� is any generator of � .

Proof. Choose any H�x� ∈� , and let cn = 2−n, n ∈�.
Define an infinite sequence 0= y1 < x1 < y2 < · · · recursively, for r ∈�, by

y1 = 0�
xr =max

(
yr + 1� sup

x>0
!x� �crH�x� > cr#

)
�

yr+1 = inf
x>xr+1

!x� H�x�= 2H�xr�#�

By construction, this sequence tends to infinity.
For x≥ 0, define

h�x�=


crH�x� for x ∈ 1yr � xr��
crH�xr� for x ∈ 1xr � yr+1��

Hence, if (7) holds for all (sufficiently small) multiples of H�x�, then it holds for h�x�, which, by construction,
is o�H�x��. Conversely, if (7) holds for some h�x�, then it holds for any function g�x� such that h�x�= o�g�x��,
and hence for all functions in class � . �

Because the properties in (D3(i)), (D3(ii)), and (D3(iii)) are all increasing function properties, rather than
finding a function h, it suffices to check them for all multiples of H , for any H ∈� , the boundary class. This
is a much easier proposition than identifying a suitable little-h function.
Remark 3.2. Let F be a distribution function such that 
F �x� = f1�x�f2�x�, where each of f1 and f2 are

long-tailed. Let the boundary class for fi be �i, i = 1�2, and generated by Hi�x� respectively. Assume that
H2�x�= o�H1�x��. Then the boundary class for F is �2. If f1�x� is slowly varying, then the boundary class for
F is again �2.

Proposition 3.3. Let F be an absolutely continuous long-tailed distribution function with continuous strictly
positive density f �x� and hazard rate q�x�= f �x�/ 
F �x�. Let H�x�= 1/q�x�. Then the boundary class of F is
generated by !cH�x�4 c ∈�+� cH�x� < x/2#.

Proof. By the long-tailed property (2) as x→	 and for appropriate h�x� we know that 
F �x − h�x�� =

F �x�+ o� 
F �x��. Hence, x − h�x� = 
F −1� 
F �x��1+ o�1���, and since 
F −1 has a derivative at all points in its
domain, h�x� = o� 
F �x��− 
F −1�′� 
F �x���, where the negative sign has been introduced to make the function
inside the little-o positive. However, 
F �x��− 
F −1�′� 
F �x��= 1/q�x�.
Conversely, if h�x�= o�1/q�x��, then it is easy to show that the long-tailed property (2) holds. �

We give some examples of calculating the boundary class.
3.1. Let 
F �x�= l�x�x−*, x > 1, where l�x� is slowly varying and *> 0. The boundary class for f1�x�= l�x�

is the whole space of functions. For f2�x�= x−* we have q2�x�= */x. Hence, the boundary class is generated
by � = !cx4 0< c < 1/2#.
3.2. Let 
F �x� = exp�−'x��, x > 0, where 0 < � < 1. Then q�x� = '�x−1+�, and the boundary class is

generated by � = !cx1−�4 c > 0#.
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3.3. Let 
F �x�= f1�x� exp�−'�log�x��*� �= f1�x�f2�x�, x > 1, where * ≥ 1 and f2�x�= o�f1�x��. We note
that this class of functions includes regular variation as in Example 3.1 above, and also log-normal. We need
only consider f2�x�. We then find that the boundary class is generated by � = !cx�log�x��1−*4 c > 0#.
As we observe in the footnote in §2, if we have a random variable X distributed with subexponential distri-

bution F with h�x� being any little-h function, and another r.v. X1 with distribution F1 such that


F1�h�x��= o� 
F �x��� (8)

then P�X+X1 > x�∼ P�X > x�, regardless of the dependence structure between X and X1.
Clearly (8) is an increasing function property. Hence, if we redefine �f �x� = 
F1�f �x��/� 
F �x�� and then

combine Proposition 3.2 with a simple induction we get:

Proposition 3.4. Let X be a random variable with subexponential distribution F and boundary class �
generated by H�x�. Let X1� 	 	 	 �Xn be r.v.’s with distribution functions F1� 	 	 	 � Fn such that, for all i= 1� 	 	 	 � n
and all c > 0, 
Fi�cH�x��= o� 
F �x��, then

P�X+X1+ · · ·+Xn > x�∼ P�X > x��
regardless of the dependence structure between the X’s.

3.2. The boundary class and auxiliary functions. Our concept of the boundary class is also closely related
to the concept of an auxiliary function, introduced by de Haan [6]; see also, for example, Asmussen and
Klüppleberg [3], Embrechts et al. [9], Resnick [18]. However, the boundary class can exist when there is no
auxiliary function, or when the conditions of the previous proposition are not met, and hence, it is a more
general concept.
The concept of an auxiliary function was introduced to characterize distributions that lie in the maximum

domain of attraction of the Gumbel extreme value distribution, MDA�;�. A positive function a�x� is an auxiliary
function for the distribution function F �x� ∈MDA�;� (with F �x� < 1 ∀x ∈�) if and only if

lim
x→	


F �x+ ta�x��

F �x� = e−t� ∀ t ∈�� (9)

If an auxiliary function exists, all such functions are asymptotically equivalent, possible choices are the reciprocal
of the hazard rate and the mean excess function (see, for example, Embrechts et al. [9]) and any auxiliary
function is in the boundary class.
The concept of the auxiliary function may be extended. For instance, for regularly varying 
F �x� ∈�−* (see

§6.2 for a definition) we have an auxiliary function a�x�, which may be taken to be a�x�= x, satisfying

lim
x→	


F �x+ ta�x��

F �x� = �1+ t�−*� ∀ t ∈�� (10)

and again any auxiliary function is in the boundary class.
The concept of the boundary class is more general than that of the auxiliary function. We can construct a

(subexponential) distribution function belonging to the class of intermediately regularly varying distributions
(see §6.2 for a definition) as follows: Let c1�x� = 2 + sin�logx� and 
F �x� = max�1� c1�x�x

−*�, * > 0. It is
straightforward to check that this has boundary class generated by � = !H�x�= cx4 0< c < 1/2# but the limit
in (10) does not exist. Indeed, if h�x� = o�x�, then c1�x + h�x� ∼ c1�x�, but limx→	�c1�x+H�x��/�c1�x���
does not exist.
We can also construct a similar example for what we might call an intermediate Weibull distribution. Let

c2�x�= 2+ sin�x��, 0<�< 1, and 
F �x�=max�1� c2�x�e−x��. Then F is a subexponential distribution function,
with a well-defined boundary class generated by � = !H�x�= cx1−�4 c > 0#, but the limit in (9) does not exist.
In both the previous examples, Proposition 3.3 can be used to find the boundary class because of the smooth-

ness of the functions c1�x� and c2�x�. However, it would be easy to replace these functions with long-tailed
functions with the same oscillatory behaviour but without the smoothness. This would not affect the boundary
class, but would no longer allow the boundary class to be generated by the reciprocal of the hazard rate.

4. Examples of conditionally independent subexponential random variables.

4.1. Example 1. Let =i, i = 1�2� 	 	 	 � n, be i.i.d. with common distribution function F= ∈ R−* (for a def-
inition of the class of regularly varying distributions of degree *, see §6.2). Let > be independent of the =i



Foss and Richards: On Sums of Conditionally Independent Subexponential Random Variables
112 Mathematics of Operations Research 35(1), pp. 102–119, © 2010 INFORMS

and have distribution function F> ∈R−�, where * �= �. Define Xi = =i+> for i= 1�2� 	 	 	 � n, and let the refer-
ence distribution be 
F �x�= x−�*∧��. Then, from well-known properties of independent subexponential random
variables, we have, for i= 1�2� 	 	 	 � n,

P�Xi > x�∼ 
F �x��
Conditional on the sigma algebra �= ��>�, the Xi are independent.
For our reference distribution, the boundary class is � = !cx� c > 0#. Now, the random variables

P�Xi > x ���/� 
F �x��≤ 1/� 
F �x�� are unbounded as x→	. If we try to satisfy the condition (5) without using
the bounded sets B�x�, we need to ensure that, for all x > 0, almost surely,

P�Xi > x ���

F �x� ≤ r�x��

If we take r�x�= 1/� 
F �x��, then condition (D3(ii)) is not satisfied, since for any c > 0,
r�x� 
F �H�x��= c−�*∧���

Hence, we need to use bounded sets. Let B�x�= !> ≤ x/2#. This satisfies condition (D3(i)), if and only if
*<�: for any c > 0,

P� 
B�H�x��

F �x� = P�> > cx/2�


F �x� = �2/c��x�*∧��−��

Clearly, in the case *<�, we may take r�x� as a constant, r�x�= 2�.
The condition * < � agrees with arguments on Xi taken from the standard theory of independent subexpo-

nential random variables.

4.2. Example 2. Let > be a random variable with uniform distribution in the interval �1�2�. Conditional on
�= ��>�, let Xi, i= 1�2� 	 	 	 � n, be i.i.d. with common distribution function


F=�>�x�= �1+ x�−>� x > 0�

Routine calculations show that
P�Xi > x�∼

1
x log�1+ x� ≡ 
F �x��

where F is our reference distribution. The boundary class is again � = !cx� c > 0#.
For all x > 1 we have, almost surely,

P�Xi > x ���

F �x� ≤ P�Xi > x � >= 1�


F �x�
= �1+ 1/x� log�1+ x�
≤ r�x�≡ 2 log�1+ x��

Routine calculations show that, for all 0< c < 1/2, condition (D3(iii)) is satisfied, and also condition (D3(ii)).
In this example there has been no need to define bounding sets, or equivalently, we can take B�x�= for

all x > 0.

4.3. Example 3. In this example we again consider a Bayesian type situation. Let Xi, i = 1�2� 	 	 	 � n, be
identically distributed, conditionally independent on parameter �, with conditional distribution F� given by


F��x�= exp�−'x��� ' > 0�

where � is drawn from a uniform distribution on �a� b�, 0≤ a< 1, a< b. The unconditional distribution of Xi,
FX , is then


FX�x�=
1

�b− a� logx �E1�'x
a�−E1�'xb���

where E1�x�=
∫ 	
x
�e−u/u�du�

We now consider separately the two cases (i) 0<a< 1 and (ii) a= 0. We start first with case (i).
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We find

FX�x�∼ 
F �x� �= exp�−'xa�

�b− a�'xa logx �
The boundary class � is the same as for the Weibull distribution,

� = !cx1−a� c > 0#�
We shall take B�x�= for all x > 0, and

r�x�= '�b− a�xa logx�
Note that Q�x�=− log� 
F �x��= log�'�b− a��+ xa+ a logx+ log logx is convex, and that

xr�x� 
F �H�x��= x
1−a2 log�x� exp�−'caxa�1−a��

ca log�cx�
→ 0�

as x→	 for all c > 0. Hence, by Lemma 2.3, the conditions in (D3) are met, and the principle of the single
big jump holds.
We now consider case (ii), with � distributed uniformly on the interval �0� b�. The reference distribution

is now

F �x�= E1�1�

b logx
�= k

logx
�

where E1�1�≈ 0�21938	 	 	 .
Because 
F is slowly varying, there is no boundary class, but the class of functions satisfying the long-

tailed property (2) is !h�x� = O�x�#. Therefore, to satisfy (D3(ii)) we need to choose r�x� such that
limx→	�r�x�/logx�= 0. For the bounded sets B�x�, the problems clearly occur near �= 0, so we may try sets
of the form B�x�= !� ∈ �a�x�� b�#, with a�x�→ 0 as x→	.
To satisfy (5) we need, for each x > 0 and for � ∈ �a�x�� b�,

exp�−'xa�x�� < exp�−'x��≤ kr�x�

log�x�
�

which cannot be true if both a�x�→ 0 and r�x�/logx→ 0 as x→	.
Hence, the conditions of (D3) cannot be met.
The question now arises whether, in this case, the principle of the single big jump still holds. The answer is

no. To see why, we again consider the representation (1), for the sum of two independent identically distributed
subexponential random variables X1�X2. For simplicity, we shall consider the case where b= ' = 1.
Considering the representation in (1), we have

P1�x�=
∫ 1

0
d�

∫ x

0
�u�−1 exp�−u��du

∫ x

0
�v�−1 exp�−v��dv1�u+ v > x��

Making the substitution u= xy� v= xz, we have

P1�x� =
∫ 1

0
d�x2�

∫ 1

0

∫ 1

0
�2y�−1z�−1 exp�−x��y�+ z���1�y+ z > 1�dy dz

≤
∫ 1

0
d�x2� exp�−x��

∫ 1

0

∫ 1

0
�2y�−1z�−11�y+ z > 1�dy dz

=
∫ 1

0
d�x2� exp�−x��J ����

where J ���= P�Y 1/�1 + Y 1/�2 > 1� and Y1� Y2 ∼ U�0�1� are i.i.d. As �→ 0, J ���→ 0, so for any � > 0 there
exists % > 0 such that J �t�≤ � for all t ≤ %. Hence,

P1�x� ≤
(∫ %

0
+
∫ 1

%

)
d�x2� exp�−x��J ���

≤
∫ %

0
d�x2� exp�−x���+ o�exp�−x%/2���
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However,

∫ %

0
d�x2� exp�−x�� ≤

∫ 1

0
d�x2� exp�−x��

= 1
log�x�

∫ 	

1
t exp�−t�dt

= 1
2 log�x�

�

Therefore,
P1�x�= o� 
F �x���

and the principle of the big jump holds. However,

P2�x�=
∫ 1

0
exp�−2x��d�= 1

log�x�

∫ 2x

2

e−u

u
du

so that

P�X1 > x� X2 > x�∼
E1�1�
E1�2�

P�X1 > x��

Hence, the principle of the single big jump does not hold. We note that this result is related to Theorem 2.2 in
Albrecher et al. [1].

4.4. Example 4. For i= 1�2� 	 	 	 � n, let Xi = =i>1>2 · · ·>i, where the !=i# are i.i.d, and the !>i# are i.i.d. and
independent of the !=i#. Then, conditional on the �-algebra generated by !>1� 	 	 	 �>n#, the !Xi# are independent.
Let the !=i# have common distribution function F in the intermediately regularly varying class, F= �= F ∈ IRV,
(see §6 for a definition), and let the !>i# have common distribution function F that is rapidly varying, F>1 ∈�−	,
(see §6 for a definition). This is related to the example given in Laeven et al. [16]. In their example, the !=i# were
chosen to belong to the class �∩� (again, see §6). We have chosen the slightly smaller class of intermediate
regular variation because:
(i) examples which lie in the � ∩� class that do not lie in the IRV class are constructed in an artificial

manner;
(ii) the IRV class of functions has a common boundary class, and hence, is suitable for general treatment

under our methodology.
The boundary class for F is � = !cx� 0< c < 1/2#.
By Lemma 6.1 the class �−	 is closed under product convolution; hence, for each i= 1�2� 	 	 	 � n we have

Xi is of the form Xi = =i> where the d.f. of >, F> ∈�−	. Then by Lemma 6.2, each Xi has d.f. 
FXi �x�� 
F �x�.
As we noted in Remark 2.3, the results of our propositions follow through with the asymptotic condition

in (D2) replaced with weak equivalence.
We now proceed to the construction of the bounding sets, B�x�. For (5) to hold, we need to restrict the

size of >. By Lemma 6.3 we can choose % > 0 such that 
F>�x1−%� = o� 
F �x��. For such an % we choose
B�x�= !>≤ x1−%#. Then, for any H�x�= cx ∈� , 0< c < 1/2, condition (D3(i)) requires

P� 
B�H�x���= 
F>��cx�1−%�= o� 
F>�x1−%��= o� 
F �x���
as required.
Now consider (5):

P�Xi > x ���1�B�x��≤ r�x� 
F �x�1�B�x���
This implies that the choice for r�x� satisfies

P�=i > x/> � >≤ x1−%�

F �x� ≤ P�=i > x

%�


F �x� = 
F �x%�

F �x� ≤ r�x��

Taking r�x�= 
F �x%�/� 
F �x��, for any H�x�= cx ∈� ,

r�x� 
F �H�x��= 
F �x%�

F �x�


F �cx�= o�1��
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and

r�x�
∫ �1−c�x

cx


F �x− y�

F �x� F �dy�≤ 
F �x%� 
F �cx�


F 2�x�

F �cx�= o�1��

Hence, all the conditions of (D3) are met, and the principle of the single big jump holds; that is:

P�X1+ · · ·+Xn > x�∼
n∑
i=1


FXi �x��

Remark 4.1. If, in addition, F is continuous, then Theorem 3.4(ii) of Cline and Samorodnitsky[5] shows
that the restriction F> ∈�−	 can be eased to 
F> = o� 
F �.

4.5. Example 5. In this example we consider random variables X1� 	 	 	 �Xn with lognormal marginals.
First we recall some facts about lognormally distributed random variables. An r.v. X ∼ LN�G��2� if X = eY

and Y ∼N�G��2�. The distribution function of X is FX�x�∼ ��/�
√
2H logx�� exp�−�1/�2�2���logx−G�2�. If

two r.v.’s X1�∼ LN�G1��21 �, X2�∼ LN�G2��22 �, then X1 has a heavier tail than X2, in the sense that 
FX2�x�=
o� 
FX1�x��, if and only if either �2 <�1 or both �2 = �1 and G2 <G1. The boundary class for FX�x� is generated
by H�x� = x/�logx�. We observe that if X1 has a heavier tail than X2, then, for all c > 0, 
FX2�cH�x�� =
o� 
FX1�x��, and by reference to Proposition 3.4 this suggests we need only consider the dependence structure as
it relates to those Xi which have the heaviest tail.
So, first, let the r.v.’s which have the heaviest distribution be X1 = eY1� 	 	 	 �Xm = eYm , each distributed with

Xi ∼ LN�G��2� with common distribution function F . We specify the dependence structure by assuming that
�Y1� 	 	 	 � Ym� ∼MVN��G� 	 	 	 �G���� where � is of full rank. We perform a factor analysis and write each
Yi = ti1Z1 + · · · + tikZk +Wi, where, for 1 ≤ j ≤ k, the Zj are i.i.d. standard normal and, independently, for
1≤ i≤m, Wi ∼N�Gi��2i � are independent normal r.v.’s. Because we place no restriction on k and � is of full
rank, this factor analysis can always be performed (nonuniquely) such that the Wi are nondegenerate; that is,
�i > 0 for all i= 1� 	 	 	 �m.
We take � to be the sigma algebra generated by Z1� 	 	 	 �Zk, and conditional on this the Xi are independent.

Our reference distribution is F with P�Xi > x�∼ 
F �x� for all i= 1� 	 	 	 �m. Each Xi can be written as Xi = Li=i,
where Li = eti1Z1+···+tikZk ∼ LN�0� s2i � and s2i = t2i1 + · · · + t2ik and =i = eWi ∼ LN�G��2i �. Then, for each i,
s2i +�2i = �2.
We choose bounding sets Bi�x� = !Li ≤ x�#, where 1 > � > maxi�s2i /�2� ensures that P� 
Bi�cH�x��� =

o� 
F �x�� for all c > 0.
Then, given Bi�x�,

P�Xi > x � Bi�x��≤ P�=i > x1−��≤ 
F �x1−���
for large enough x. So we may take

r�x�= 
F �x1−��

F �x�

which is monotonically increasing for large enough x.
Because the lognormal reference distribution has a hazard function that is eventually concave, and, for all

c > 0,

xr�x� 
F �cH�x��= x 
F �x1−��

F �x�


F
(
cx

logx

)
→ 0

as x→	, then we can apply Proposition 2.3 and conditions (D3(ii)) and (D3(iii)) hold. Hence, P�X1 + · · · +
Xm > x�∼mP�X1 > x�.
Now we apply Proposition 3.4, with X1+· · ·+Xm in place of X and Xm+1� 	 	 	 �Xn as the lighter-tailed r.v.’s

and conclude that
P�X1+ · · ·+Xn > x�∼mP�X1 > x��

and the principle of the single big jump holds.
The example of lognormal random variables with Gaussian copula was studied in Asmussen and Rojas-

Nanayapa [4]. Although our results agree with their results, there are some small differences in the assumptions.
In Asmussen and Rojas-Nanayapa [4] it is assumed that the whole dependence structure is a Gaussian copula,
but in our setup the dependence of the lighter-tailed random variables is not specified. However, we feel that, in
practice, this is an unimportant point. More important, we assume that the covariance matrix � for the heaviest
random variables is of full rank. This is not assumed in Asmussen and Rojas-Nanayapa [4]. The condition in
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their paper is that each pair Xi = eYi , Xj = eYj , where i �= j and Var�Yi�= Var�Yj� has correlation between Yi
and Yj of Mij < 1. This does not imply that the covariance matrix is of full rank. Indeed, a simple example, for
i = 1�2�3, is given by Y1, Y2 i.i.d standard normals, and Y3 = �Y1 + Y2�/

√
2. It is clear that our methodology

cannot deal with this example, as only conditioning on the trivial sigma algebra can make these independent. In
this sense the result in Asmussen and Rojas-Nanayapa [4] is more general.

5. Real-valued random variables. We wish to extend our investigation beyond nonnegative random vari-
ables to conditionally independent subexponential random variables taking real values. To deal with this situation
we need to add another condition to those enumerated in §2 at (D1), (D2), and (D3). Again we let F be a
reference subexponential distribution, and we let h be a function satisfying (2).
(D4) For each i� j ≥ 1 we have that

P�Xi > x+h�x��Xj ≤−h�x��= o� 
F �x���
We then have the following extension of Proposition 2.1.

Proposition 5.1. Let Xi, i = 1�2� 	 	 	 , be real-valued random variables satisfying conditions (D1), (D2),
(D3), and (D4) for some subexponential F concentrated on the positive half-line and for some h�x� satisfying (2).
Then

P�X1+ · · ·+Xn > x�∼
n∑
i=1
P�Xi > x�∼

( n∑
i=1
ci

)

F �x��

Proof. The proof follows the general outline of the proof of Proposition 2.1. The derivation of an upper
bound for P�X1+X2 > x� remains as in Proposition 2.1. For the lower bound we have:

P�X1+X2 > x� ≥ P�X1 > x+h�x�� X2 >−h�x��+P�X2 > x+h�x�� X1 >−h�x��
−P�X1 > x+h�x�� X2 > x+h�x��

= P�X1 > x�+P�X2 > x�+ o� 
F �x���
where we have used the long-tailedness of X1 and X2, condition (D4) and P�X1 > x+ h�x�� X2 > x+ h�x��=
o� 
F �x�� for the same reasons as in Proposition 2.1. Hence P�X1+X2 > x�∼ P�X1 > x�+ P�X2 > x�, and the
rest of the proof follows by induction. �

We can see that the only reason for condition (D4) is to deal with the lower bound, and hence no change is
needed to show the two following generalisations of Lemma 2.1 and Proposition 2.2.

Lemma 5.1. We let !Xi# be as in Proposition 5.1 and satisfying (D1), (D2), (D3), and (D4). Then, for any
% > 0, there exist V �%� > 0 and x0 = x0�%� such that, for any x > x0 and n≥ 1,

P�Sn > x�≤ V �%��1+ %�n 
F �x��
Proposition 5.2. If, in addition to the conditions of Lemma 5.1, � is an independent counting random

variable such that E�e'�� <	 for some ' > 0, then

P�X1+ · · ·+X� > x�∼E
( �∑
i=1
P�Xi > x�

)
�

To show that condition (D4) is both nonempty and necessary we construct an example where it fails to hold
and the principle of the single big jump fails.
Example 6. Consider a collection of nonnegative i.i.d random variables !Zi#i≥0 such that each Zi has the
distribution of a generic independent nonnegative random variable Z, and P�Z > x� = 1/x* for x ≥ 1. Also
consider a collection, independent of the Zi, of nonnegative i.i.d random variables !Yi#i≥0 such that each Yi has
the distribution of a generic independent nonnegative random variable Y , and P�Y > x�= 1/x� for x≥ 1, where
*>�> 1. For i≥ 1 let Xi =Zi− YiZi−1�
First we show that the Xi satisfy conditions (D1), (D2), and (D3).
For any i≥ 1 we have that P�Xi > x�∼ 
F �x� �= 1/x* for x ≥ 1, and we recall that the boundary class for F

is � = !cx4 0< c < 1/2#. We take � = ��!YiZi−1#i≥1�, and then, conditional on �, the Xi are independent. To
show that condition (D3) is met we need to consider the random variables P�Xi > x ���, so consider

P�Xi > x � Yi+1Zi =w�≤ P�Zi > x � Yi+1Zi =w�= P�Z > x � YZ=w��
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We calculate that

P�Z > x � YZ=w�

F �x� =



x*

(
x−*+�−w−*+�

1−w−*+�

)
for 1< x≤w�

0 for x > c�

≤ x� �= r�x��
Clearly r�x� 
F �cx�= o�1� for all 0< c < 1/2.
Also, straightforward estimation shows that

∫ �1−c�x
cx

� 
F �x− y�F �dy�/� 
F �x���= O�x−*�, and hence condition
(D3(iii)) is met. We take B�x�= for all x≥ 0 so that there is nothing to show for (D3(i)).
We now consider condition (D4). For any i≥ 1, and any H�x� satisfying (2),

P�Xi > x+h�x��Xi+1 <−h�x�� = E�P�Z1−W >x+h�x�� Z2− Y2Z1 <−h�x� �W��
≥ E�P�Z1 > x+h�x�+W� Z2 <Z1−h�x� �W��
≥ E�P�Z1 > x+h�x�+W� Z2 < x+W �W��
= E�P�Z1 > x+h�x�+W�P�Z2 < x+W �W���

Hence, by Fatou’s lemma,

lim inf
x→	

P�Xi > x+h�x�� Xi+1 <−h�x��

F �x�

≥ lim inf
x→	 E

(
P�Z1 > x+h�x�+W �W�

P�Z1 > x�
P�Z2 < x+W �W�

)

≥E
(
lim inf
x→	

(
P�Z1 > x+h�x�+W �W�

P�Z1 > x�
P�Z2 < x+W �W�

))

= 1�
and so condition (D4) is not met.
Finally, we show that the conclusion of Proposition 5.1 fails in this example:

P�X1+ · · ·+Xn > x� = P�Zn+ �1− Yn�Zn−1+ · · ·+ �1− Y2�Z1− Y1Z0 > x�
≤ P�Z > x��

6. Notations and definitions.

6.1. Notation. For a random variable (r.v.) X with distribution function (d.f.) F we denote its tail distribution
by P�X > x� �= 
F �x�. For two independent r.v.’s X and Y with d.f.’s F and G we denote the convolution of F
and G by F ∗G�x� �= ∫ 	

−	 F �x− y�G�dy�= P�X + Y ≤ x�, and the n-fold convolution F ∗ · · · ∗ F �= F ∗n. In
the case of nonnegative random variables we have F ∗G�x� �= ∫ x

0 F �x− y�G�dy�= P�X+ Y ≤ x�.
Throughout, unless stated otherwise, all limit relations are for x→	. Let a�x� and b�x� be two positive

functions such that

l1 ≤ lim inf
x→	

a�x�

b�x�
≤ lim sup

x→	

a�x�

b�x�
≤ l2�

We write a�x� = O�b�x�� if l2 < 	 and a�x� = o�b�x�� if l2 = 0. We say that a�x� and b�x� are weakly
equivalent, written a�x� � b�x�, if both l1 > 0 and l2 <	, and that a�x� and b�x� are (strongly) equivalent,
written a�x�∼ b�x�, if l1 = l2 = 1.
For any event A ∈ we define the indicator function of event A as

1�A�=


1 if A occurs�

0 otherwise�

We use X ∨ Y to mean max�X�Y �, and X ∧ Y to mean min�X�Y �.
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6.2. Definitions and basic properties. We recall some well-known results on long-tailed and subexponential
distributions and their subclasses.
A nonnegative r.v. X with distribution F is heavy-tailed if E�e'X� = 	 for all ' > 0, and long-tailed if


F �x+1�∼ 
F �x�. The class of long-tailed distributions, �, is a proper subclass of the heavy-tailed distributions.
The distribution F is long-tailed if and only if there exists a positive function h, monotonically increasing to
zero and satisfying h�x� < x such that


F �x−h�x��∼ 
F �x�� (11)

An r.v. X with distribution F is subexponential if 
F ∗2�x� ∼ 2 
F �x�. This is equivalent to 
F ∗n�x� ∼ n 
F �x� for
any n ≥ 1. The class of subexponential distributions, 	 , is a proper subclass of the class � of long-tailed
distributions. If X1 and X2 are independent and have common d.f. F , then P�X1+X2 > x�∼ P�max�X1�X2� > x�.
A nonnegative r.v. X with distribution F supported on the positive half-line is subexponential if and only if
(i) F is long-tailed;
(ii) for any h�x� < x/2 tending monotonically to infinity,

∫ x−h�x�

h�x�


F �x− y�F �dy�= o� 
F �x��� (12)

A positive function l is slowly varying if, for all P > 0, l�Px� ∼ l�x�. A distribution function F belongs
to the class of regularly varying distributions of degree *, �−*, if 
F �x� ∼ l�x�x−* for some slowly vary-
ing function l. A distribution function F belongs to the class of extended regular varying distributions, ERV,
if lim infx→	� 
F �Px�/ 
F �x�� ≥ P−c for some c ≥ 0 and all P ≥ 1. A distribution function F belongs to the
class of intermediately regular varying distributions, IRV, also called consistent variation by some authors, if
limP↓1 lim infx→	� 
F �Px�/� 
F �x��� = 1. A distribution function F belongs to the class of dominatedly regular
varying distributions, �, if lim infx→	� 
F �Px�/� 
F �x���≥ 0 for some P> 1. A distribution function F belongs to
the class of rapidly varying distributions, �−	, if limx→	� 
F �Px�/� 
F �x���= 0 for all P≥ 1. We have the proper
inclusions (see Embrechts et al. [9])

�−* ⊂ ERV⊂ IRV⊂�∩� ⊂	 ⊂��

The following three lemmas stem from Cline and Samorodnitsky [5], Tang and Tsitsiashvili [20], Laeven
et al. [16] and are used in the development of Example 4 in §4.

Lemma 6.1. The class �−	 is closed under product convolution.

Lemma 6.2. Let X and Y be two independent positive r.v.’s, and let the distribution function of X, FX ∈
�∩�, and let that of Y , FY ∈�−	. Let the distribution function of XY be FXY . Then 
FXY �x�� 
FX�x�.
Lemma 6.3. If F ∈� and F> ∈�−	, then there exists % > 0 such that 
F>�x1−%�= o� 
F �x��.
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