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Abstract

We study conditions under which
P{S; > a} ~P{M; >z} ~ETP{& > 2} asz — oo,

where S, is a sumé; + ... + &, of random sizer and M. is a maximum of partial sums
M; = max,<; S,. Hereé,, n =1, 2, ..., are independent identically distributed random
variables whose common distribution is assumed to be suexyiial. We consider mostly
the case where is independent of the summands; also, in a particular sitmate deal with
a stopping time.

Also we consider the case whei > 0 and where the tail of is comparable with or
heavier than that of, and obtain the asymptotics

P{S; >z} ~ETP{& > z} + P{r > z/E¢} asz — .

This case is of a primary interest in the branching processes

In addition, we obtain new uniform (in af andn) upper bounds for the ratiB{S,, >
z}/P{& > x} which substantially improve Kesten’s bound in the subcl&Ssof subexpo-
nential distributions.
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1. Introduction

Leté&, &, &, ... be independent identically distributed random vaeiglwith a finite mean.
We assume that their common distributibhis right-unbounded, that ig; (z) = P{¢ > 2} > 0
for all x. Moreover, we assume thathas aheavy(right) tail. Recall that a random variablehas
aheavy-taileddistribution if Ee*” = oo for all ¢ > 0, andlight-tailed otherwise.

LetSp =0andS, =& +...+&,n=1,2,...,and letM,, = maxo<i<y, S; be the partial
maxima. Denote by™*" the distribution ofS,,.

Let T be a counting random variable with a finite mean. In this papeistudy the asymptotics
for the tail probabilitiesP{S; > =} andP{M, > =} asz — oc.

It is known that, foranydistribution £ on R™ and forany counting random variable which
is independent of the sequen{s, },

P{S; >z} -

lim inf

ET,
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see, e.g.[[359,10]. It was proved in the series of pagers[[1@0Pthat if ' is a heavy-tailed
distribution onR™* with finite mean and iP{cr > z} = o(F(x)) asx — oo, for somec > E¢,
then

lim inf M =

ET. 1)

This gives us the idea what asymptotic behaviouP¢f5, > x} should be expected, at least if
the tail of 7 is lighter than that of. In particular, by considering the case= 2, we conclude
that if I is a heavy-tailed distribution oR™ and if P{Ss > 2} ~ cF(z) asx — oo, for some
¢, thenc = 2 with necessity (sed [13]). By the latter observation, werigtsour attention to
subexponential distributions only.

A distribution F onR™ with unbounded support is calledbexponentiall’ € .7, if F' x F(z) ~
2F (z) asz — oo. A distribution F' on R is called subexponential if its conditional distribution o
R is subexponential. It is well known that any subexponertiairibution is heavy-tailed and,
even more, is long-tailed. A distributiofl with right-unbounded support is calléohg-tailed if
F(z +y) ~ F(z) asz — oo, for any fixedy.

The key result in the theory of subexponential distribugia if F' is subexponential and if
does not depend on the summands and is light-tailed, then

P{S, >z} ~ ETF(z) asz — cc. (2)

A converse result also holds: if, for a distributidnh on R™ and for an independent counting
random variable- > 2, P{S, > 2z} ~ ETF(z) asz — oo, thenF is subexponential (see, e.g.
[L0).

The intuition behind relatiori {2) is th@inciple of one big jumpin the case of heavy tails, for
x large, the most probable way leading to the et > =} is that one of. summandsgy, ...,
&, is large while all others are relatively small. Asymptoligahis gives the probability: F'(z),
and conditioning onr yields to the multipliefEr. The keystone of the proof is Kesten’s bound:
for any subexponential distributiof and for anye > 0, there existd{ = K (F,¢) such that the
inequality

F*(x) < K(14¢)"F(x)

holds for allz andn; see, e.g.[]2, Section IV.4]. Clearly this estimate doesh&hp to prove
(2) if the distribution ofr is heavy-tailed. So the question of the basic importancéf e fix
a subexponential distributiof’, then what are the weakest natural conditionsromhich still
guarantee relationl(2) to hold? Intuitively, the lightltginess assumption seems to be very strong.
The study of this problem is one of the main topics of the prepaper.

In order to state our first result, we need to introduce thenaif . *-distribution. A distri-
bution F' on R with a finite mean belongs to the clags® if

/01’ F(z —y)F(y)dy ~ 2aF(x) asz — oo,

wherea = 2 [° F(y)dy. Itis known (see Kliippelberd T18]) that any distributianrh the class
< is subexponential. Though these two class#$,and.”, are considered as rather similar,
there exist subexponential distributions which are not/ih, see, e.g.[]8] and the discussion in
Section 2 below. Classical examples of distributions frben ¢tlass¥* are Pareto, log-normal,
and Weibull with parametes € (0, 1).



Theorem 1. Assume that a counting random variabieloes not depend oft,, }. Let F' € ./*.
(i) If E€ < 0then

P{S, > x} ~P{M, >z} ~ ETF(x) asx — oc. €))
(i) If E¢ > 0 and if there exists > E¢ such that
P{cr > 2} = o(F(x)) asz — oo, 4)
then asymptotic€3) again hold.

The latter theorem shows that if we restrict our attentianmfrthe class of all heavy-tailed
distributions to the class”*, we obtain equivalencél(3) which is stronger than asse(fiprior
the 1liminf’. Definitely we should assume the subexponentialityvoih order to get[(B). At the
end of Sectioml4 we construct an example demonstrating lkagttonger conditiod” € .7* is
essential for the statement to hold in the whole generafity @nnot be replaced by condition
Fes.

The proof of Theoreriil1 is carried out in Sectldn 4. Statemgrdafh be found in[[15]; in
Sectior[ 4 we give an alternative proof of (i). Note that thes®cases, negative and positive mean
of &, are substantially different in their nature.

Condition [4) seems to be essential, since, for@aryE¢,

P{S; >z} = P{S;>zx,c7 <z} +P{S; >z,cr >z}

> (Br +o(1)F(x) + (1 + (1) Pfer > o}

asx — oo, due to the convergend®{S; > x|ct > z} — 1, by the Law of Large Numbers. In
particular, forr with a regularly varying tail distribution, conditiohl(49 necessary for asymptotic
relation [3) to hold. Further discussion on conditibh (4) ba found in Sectionl4.

Stam in [37, Theorem 5.1] and A. Borovkov and K. Borovkov/[ih §&ction 7.1] obtained
asymptotics[(8) under conditionl (4) for regularly varyifig Some results by Starih [37] have been
proved again by Fagt al. in [12Z]. The case wheré" is a dominated varying distribution was
studied by Nget al. [30] and by Daleyet al. [6]. A subclass of so-called semi-exponential
was considered im]3, Section 7.2]. [n]15, Corollary 2],ragyotics [(3) were obtained in the case
E¢ > 0 under the extra assumpti@{+ > h(x)} = o(F(x)) for some functiom(x) — oo such
that F'(z + h(z)) ~ F(z).

In Sectior2, we derive new simple uniform upper bounds ferrtitio '+ () /F (x) which
generalise Kesten’s bound fof *-distributions. We prove the following

Theorem 2. Assume that’ € .7*. If E€ < 0, then there exists a constafit such that

—— 2 < Kn forall nandz.
F(z)

If E¢ € [0, 00), then, for anye > E¢, there existds such that

F_ (z) < _K for all n andz.




The latter estimates are also of their own interest. Thegtantially improve similar bounds
in Shneer[[36, Theorems 1 and 2] (see also Dalegl. [6, Theorem 3]). In Theorem 4, Section

[2, we show that the conditioR' € .#* is essential for the statement of Theorlgm 2 to hold; more

precisely, we construct a distributidn € .7\ .* with negative mean such thatp,, , i ;L(%) =

Q.

A closely related topic is the asymptotics of the typéS,, > z} ~ nF(x) asn, v — oo
which have been extensively studied starting from 60s. Trseviorks are remarkable papers of
S. Nagaevi[24, 26], LinniK]21] (in this paper, in a specia&ahe asymptotics are stated, but the
key relation (10.10) on p. 303 is not supported by a proofy later on of A. NagaeV [23, 24]
where in particular the regularly varying distributionsrereonsidered. Namely, i is regularly
varying with the parameter > 2 andE¢; = 0, E€? = 1, then under mild technical conditions
(seel[28],[28, Theorem 1.9], dr[B2, Theorem 6]) the follogiasymptotics hold

P{S, >z} ~ ®(z//n) + nF(z) asz — oo uniformly inn < z?;

hered is the tail function of the standard normal law. Furthemlldws that, ifz<./(a—2—¢)nInn,
then the asymptotics follow the Cental Limit Theorem, wifile > /(o — 2 + )nInn, then the
probability of a single big jump dominates. For Weibull-ydistributions the situation is more
complicated, see, e.g., A. Nagaévl[24], S. NagaeV [27], Ragi0[B3, [34]. Detailed overviews
of results in the theory of large deviations for random walkth subexponential increments are
given in S. Nagae\ [28] and in Mikosch and A. NagdeV [22]. Eherstill an ongoing research in
this area, see recent works by A. Borovkov and K. BorovkdyA3JBorovkov and Mogulskii[[4],
Denisovet al. [Z] and references therein. In Sectidn 3 of this paper, foarditrary distribution

F € .*, we find a range fon = n(z) where the asymptoticB{S,, > =} ~ nF(z) hold. The
corresponding proof is surprisingly short.

In Section[b, we study the case where the tail distributiohs and ¢ are asymptotically
comparable and, for a subclass of subexponential disisit we obtain the asymptotics for
P{S; > z} which differ from [3), see Theorefj 8. This generalises teda} A. Borovkov and
K. Borovkov [3] and by Stani[37], see Section 5 for further coemts. As a corollary, in Section
[6, we obtain new tail asymptotics for Galton—Watson bramglurocesses.

In Section[¥, we study the case wheramay depend orf&,}, in particular, wherer is a
stopping time. First, we prove Theoréin 9 where we obtainvadgmce [(B) for bounded. In the
proof, we adapt the approach developedid [16] and gener@lisenwood’s result onto the whole
class of subexponential distributions. Then we consideurdroundedr and prove Theorem
[13 which states that equivalendé (3) holds under a strorggemaption than[{4) (see condition
(37) below). Theorerh 10 geleralises earlier results by @weed and Monroe[[17] and by A.
Borovkov and Utev[]b], see Corollafy 3 and comments afteCibncerning the asymptotics for
the maximum, it was shown ifi[l5] (see algal[14]) that the ejahnceP {M, > x} ~ ETF(z)
holds without any further assumptions on the tail distidoutof 7 if E¢ < 0 and under condition
(37) otherwise.

2. Uniform upper boundsfor tails; proof of Theorem[2

In this Section, for the ratioB*" () /F (), we derive more precise upper bounds than Kesten'’s
bound, which are again uniform in We consider two casds¢ < 0 andE¢ > 0 separately. We
need the following result:



Theorem 3 ([20] and [8, Corollary 4]) Assume thaf' € .* andE¢ < 0. Then, ast — oo and
uniformly inn > 1,

1 a+n|EE| _
P{M, >z} ~ @/ F(y)dy.

Proof of Theorerh]2First we consider the case (i) of negative mean. Taking ictmant the
inequality S,, < M,,, Theoreni B, and the inequality

T 7 5
S <
\ES\/x (y)dy < nF(x), (5)

we obtain statement (i) of the theorem. B N N

Now consider the case (ii) wheE > 0. Takec > E¢. Puté; = §;—c andS, = &1+ +Ey.
ThenE¢ = E€ — ¢ < 0 and again we can apply Theoréin 3. Thus, there exists a corstasuch
that, for allz andn,

— n|E§| —
Fo(e) < K / Fe +y)dy
0

whereF in the distribution oft. Therefore,

IN

P{S, > z} = P{S, >z — nc} Kl/ Fx—nc—l—y)d

= Kl / F x —
SinceF € .*, the distributionF’ is long-tailed and, hencé_?,(;n) ~ F(z) asx — oo. Then

P(S, >} < K /0 " Fle - y)dy, 6)

for some constank’s and for allz > 0. If x > nc, then
ne nc F y
[ Fe-vay < ["Fa-nzDay

< /Ox F(z - y)F((y) dy < K3

where

Ky = sup F(l ) /z F(z —y)F(y)dy

is finite, owing tof’ € .. If x < nc, then

Fi(z) < 1< F@)
F(nc)

These two bounds together wiff (6) complete the proof of duesd assertion of Theordrh 2.
From Theoreni]2 and from the dominated convergence theorentgeduce the following
corollary.



Corollary 1. Tail equivalencd3) holds if I’ € .“* andE¢ > 0, provided that

e}

Z% < oo for somer > E¢.

n=1

The latter condition is stronger than conditidh (4), beeaus

P{r >k} < ZP{T:TL}.

F(ck) F(cn)

n>k

Now let us discuss the importance of the conditione .* in Theoren{ 2. The following
observation shows the essence of the difference betweedasses of distributionsy” and.”*,
is the following one. Let a long-tailed distributidii be absolutely continious with densify For
any functionh(z) > 0,

r—h(z) v—h(z)
/ F(x —y)F(dy) = / F(z —y)f(y)dy.
h(zx) h

ThenF' is subexponential if and only if

:v—h(m)_ o
/ Flo—y)fy)dy = o(F(x)) asz — oo
h(x)

holds for any functiork(z) — oo; equivalently, if it holds for some functioh(x) — oo such that
F(x — h(z)) ~ F(x). On the other handy € .7* if and only if

x—h(z) .
/h( | Fx—y)F(y)dy = o(F(z)) asx — oo.

In typical cases (x) = o(F(z)) and, hence,

x—h(z) z—h(z) _ _
/ Flx—y)fly)dy = 0(/ F(x - y)F(y)dy> asz — 0o.
h(z) h(z)

It means that the subexponentiality Bfis more likely thanF' € .*. The latter observation
gives the idea how to show that the conditibne .* in Theorenl 2 cannot be extended to the
subexponentiality of".

Theorem 4. There exists a subexponential distributibBron R with a negative mean such that
2

- n
Fk (x),) > c—k
() 2 In ny

F(zy),

for somec > 0 and for some sequenceg, xi — oo.

The latter theorem yields that, for some distributiore .\ .* with negative mean, the first

estimate of Theoref 2 fails, that isip,, , i—;(%) — 00




Proof of Theoreni # We start with a construction of a specific subexponentiatitigion G' on
the positive half-line. PuRy = 0, R = 1 and Ry, = ef* /Ry for k > 1. Sincee®/x is
increasing forr > 1, the sequenc&;, is increasing and

Ry = O(R]H_l) ask — oo. (7)
Putt, = R2. Define the hazard functioR(z) = — InG(z) as
R(z) = Ry +r(z —t,)  forz € (tg, tpyal,

where

Ren— R, 1 1

— ~ )
tet1 — tk Rpi1+ R Rpy ®

Tk

by (@). In other words, the hazard rater) = R'(z) is defined as:(z) = ry for x € (tx, tg41],
wherery, is given by [8). By the construction, we haw&t;) = e~V so that at pointg;, the
tail of G’ behaves like the Weibull tail with parametef2. Between these points the tail decays
exponentially with indexes;,.

We prove now thatr has finite mean and is subexponential. Sincd by (8)

tht+1
/ e_R(y)dy — Tk_l(e_Rk _ e—Rk+1)
tk
~ rte B~ Ryt = 1/Ry,
the mean of7,
o . o tk+1 .
| e =Y [ G
0 k=0 "tk
is finite.
It follows from the definition that(z) decreases to 0. Then we can apply Pitman’s criterion

[BT] which says that: is subexponential if the functiogt” ) —E®)r(y) is integrable ovefo, o).
In order to estimate the integral of this function, put

tht+1

12

Then
Iy = /tk+1 evrn” Btk gy < e Rtrntig,
t
Since
ikl = TeRpyy ~ R ()]
by (8) and

ity = TeRy ~ R2 /Ry = Rie T — 0,

7



we getl;, < 2R;.e~ % ~ 2/Ry, for k sufficiently large. Therefore,

/ eyw(y)—R(y)r(y)dy = Zlk < 00,
0 k=0

andd is indeed subexponential.
In the sequel we need to know the asymptotic behaviour ofdhevfing internal part of the
convolution integral at pointy:

3tp/4 3ty /4
Ji, = / Gty —y)G(dy) = / e v =Ry (y)dy.
tk/4 tk/4

Owing to [7),tx—1 = o(tx). Thus,(tx/4, 3tx /4] C (tx—_1,tr — tx—1] for all sufficiently largek.
For those values o, we have

3ty /4
Jp, = a(tk)/ e—(—mﬂy)e—(Rk—1+7‘k71(y—tk71))Tk_ldy
tr/4
> G(t)(tr/2)e 1y
Applying (@) and the equality’*-1 = R, R;._, we obtain, for all sufficiently largé,
T > Gltr)e 1Ry /3 = G(ty) /3Ry (10)

Let n1, 12, ... be independent random variables with common distdbut’ and putT,, =
m + ...+ n,. Foranyn, we have

P{T, >z} > Z P{T,, > z,n; >n,n; >n,m <nforalll #i,j}
1<i<j<n
n(n—1)
= TP{Tn >, >n,me >Ny < ny ..,y <nk
Sincen’s are positive, the latter probability is not smaller than
P{771 +n2>T,m >n,n > ’I’L}P{T]g <N, < TL}
The mean of; is finite, thusG(n) = o(1/n) asn — oo and
P{ns <n,....nn <n}=(1-Gn)"? -1

Putting altogether, we get, for all sufficiently largethe following estimate from below

2
P{T, >z} > %P{m +n2 > x,m > n,my > nk. (11)

Now taken = nj = [\/tx] = [Rx]. Then, for all sufficiently largé (at least for thosé where
ng < tr/4),

P{m +mn2 > te,m > ng,m2 > ngt > Ji.



Therefore, by[(111) and (10), for all sufficiently large
P{Ty, >t} > ngG(ty)/9Rk—1 ~ niG(ty) /9 nny,

due toR;_1 ~ In R, ~ Inny.

Denoteb = En;. Put§; = n; — 2b, then{’s have negative mean aiff} = 7,, — 2nb. Denote
by F the distribution of¢y; it is subexponential becauseis.

Takex = xp, = t;, — 2n.b, So thatry, ~ n% By the latter inequality we have

P{S,, >z} =P{T,, >t;} > niG(tx)/101Inny.
Note also that
F(xr) = Gty — 2ngb) = G(ty,)e™ 120 < G(ty,)e?
because;_1n; < r,_1R; < 1by (8). Therefore, the inequality
P{S,, >z} > niF(zg)e 2 /101nny,

holds which yields the conclusion of the theorem.

The subexponential distributio@ constructed in the latter proof cannot belong to the class
/* because otherwise the theorem conclusion fails, as folfows Theoreni 2. The fact that
G ¢ .* can also be proved directly. Klippelberg’s criteribnl[$8tes tha; € .* if and only
if

/eyr(m)_R(y)dy — / G(y)dy asz — oc.
0 0

In our construction,

t,—0 tg
/ i (t=0-RW) gy > / i1 Rl) g
0

te—1
> (tk — tk_l)ﬁ_kal

~ Rze_R’ﬁ*1 = ekal/R,%_l — 00

ask — oo. Hence G ¢ .7*.

3. On theasymptotics P{S,, > z} ~ nF(x)
As before, we assumiB¢ to be finite. Then, by the Strong Law of Large Numbers,
P{S, > —An} — 1 asA — oo uniformly inn > 1, (12)
and by the Chebyshev’s inequality
P{& > An} < El&1|/An forall A > 0andn > 1. (13)

Theorem 5. Let F' € .* and let an increasing functioh(z) > 0 be such that’(z & h(z)) ~
F(x). ThenP{S,, > 2} ~ nF(x) asz — oo uniformly inn < h(z).



Proof of the lower bound is similar to that ibl[7, Section 4ix A > 0. We use the following
inequalities:

P{S,>a} > Y P{S,>uz&>a+ An,& < Anforall j # i}

i=1

nP{S, —& > —An, & >z + An, & < An,... &, < An}
nF(z + An)P{S,_1 > —An, & < An, ... &1 < An}.

Y

We haveF (z + An) ~ F(z) asx — oo uniformly inn < h(z). Taking also into account that
P{Sn—l > _An7£1 < ATL, s 7£n—1 < A’I’L} > P{Sn—l > —ATL} - (TL - 1)P{£1 > A’I’L},
we get, for any fixedd > 0,

liminf inf M

il e 2 PS> —dAnt - (0 - 1PiG > An}).

Since the infimum on the right goes toas A — oo owing to [12) and[{13), we arrive at the
following lower bound

liminf inf M

— 1.
z—o0 n<h(z) nF(x) -

To prove the upper bound, we apply Theorfgm 3 to random vasi@bl: & — E& — 1 with
negative meait¢;, = —1 and toS,, = S,, — n(E&; + 1). Thus,

P{S, >z} = P{S,>z—n(E&+1)}
rz—nE&; __

< ﬂ+0ﬂ»/ﬁ Fle +u)du

i—n(E&-l-l)
< (1+4o(1))nF(z — n(EE + 1))

asz — oo WhereF is the distribution oft. If n < h(x) thenF(z — n(E¢; + 1)) ~ F(x) as
x — oo and the proof is complete.

The rangen < h(z) is usually more narrow than one could expect. Say, for thelagy
varying distributions (more generally, for the intermeedigegularly varying, see the definition in
Sectior[b) we can takk(xz) = o(z). Then we get the range = o(z) while the standard (if the
mean is zero and the second moment is finite) rangé is cnIn n; in the class of distributions
with finite mean, the relatio®{S,, > =} ~ nF(x) holds in the range > (E¢ + ¢)n, ¢ > 0, see
S. Nagaev[[29]. The advantage of the result in Thedrem 5 sritglicity and universality since
it is valid for all distributions from.”* without any further moment or regularity assumptions,
compare with a series of results [d [3,[4, 7] where the hazatel is assumed to be sufficiently
smooth.

As follows from [4], if the mean is zero and the second momeiffiite, then the right range
should ben < h%(z), roughly speaking. Our technique allows to prove the lowemid for this
range.

Theorem 6. LetE¢ = 0 andE¢? < oo. Let F be a long-tailed distribution and let an increasing
functionh(z) > 0 be such that(z & h(z)) ~ F(x). ThenP{S,, > x} > (1 + o(1))nF(z) as
x — oo uniformly inn < h?(z).

10



Proof. Fix A > 0. By the Chebyshev’s inequality,
P{& > Avn} <E?/A*n and P{S, > —A\/n} > 1 — E£?/A% (14)
In this proof we use a slightly different inequality than iretprevious theorem:

P{S, >z} > Y P{S,>uz& >+ AVn g < Aynforallj i}

i=1
= nP{Sn_gl>_A\/E7£1>$+A\/ﬁ7£2§14\/ﬁ77£n§A\/ﬁ}
= TLF(% + A\/E)P{SN—l > _A\/Ea 51 < A\/ﬁ7 s 7671—1 < A\/ﬁ}

Sincen < h%(z), F(x + Ay/n) ~ F(z) asz — oo. Applying (12), we get

P{Sn—l > _A\/ﬁv 51 < A\/ﬁ7 R 7£n—1 < A\/ﬁ}
> P{S,_1 > —AVn} — (n— DP{& > AVn}
> 1-2E€£2/A% -1 asA — .

Now the lower bound foP{S,, > =} follows.

4. Proof of Theorem[d]

Sincer is independent of’s, we can use the following decomposition:
P{S, >z} =) P{r =n}F"(z).
n=0

By the subexponentiality, here theh term is equivalent taP{r = n}F(z) asz — oc. In
particular, by Fatou’s lemma,

lim inf M

> Z nP{r =n} = Er, (15)
n=0

without any condition on the sign d&¢£. In the case of negative mean, thth term is bounded
from above bynF'(z), seel(5). Then the dominated convergence for series yittEnsent (i) of
the theorem.

Now turn to the proof of statement (ii) whekt > 0. SinceS, < M., it follows from (13)
that it is sufficient to prove that

P{M, >z} ~ ErF(r) asz — oc. (16)
To prove the latter relation, we start with the following regentation: for anw,

P{M; >z} = P{M;>z,7<N}+P{M; >z,7€ (N,z/c]} + P{M; > z,cT >z}
= P+ P+ P;. (17)

Since any *-distribution is subexponential arft), < M,, < & + ... + &,

P{M, >z} ~nF(z)

11



asx — oo, for anyn. Thus, for any fixedV,

N
P{M, > 2,7 <N} =Y P{r=n}P{M, >z} ~ E{r;7 < N}F(z)
n=1
asz — oo which implies the existence of an increasing functiétw) — oo such that

=P{M, >xz,7 < N(z)} ~ErF(z). (18)

In what follows, we use representationi(17) wiXi{z) in place of N. We further estimate the
second term on the right side [N {17). Let= (c — E¢)/2 > 0 and letb = (E¢ + ¢)/2. Consider
gn =&, — b, S, = 51 +. +§n andMn = maX(Sl, ..,S ). ThenEg = —e < 0and we can
apply Theorenm3. Taking into account thigf, < M + bn, we obtain that there exists such
that, for allx andn,

P{M, >z} < P{M,>az—bn}
ne —

< K F(z —nb+y)dy

< K/ F(x —nb+y)dy.

Hence,
=P{M; >z,7€ (N(z),z/c]} < K Z P{T—n}/ F(x —nb+y)dy.

Sinceb — ¢ = E¢,

nE¢
Then
/e [x/c]
R < K/ F(z —y)dy > Pir =n}
JEE n=max (N (z),[y/b]+1)

bz/c

< K / y)P{T > y/bdy
bm/c o

< K / F(z —y)P{r > y/c}dy, (19)

N(z)E¢

becausé < c. By condition [4),P{r > y/c} < K{F(y), for someK; and ally. Therefore, the
inequality
bz/c

Py < KK, /N e T =Py = oF(@)) asz — o (20)

12



follows fromb/c < 1 and fromF' € .*. Indeed, for any”*-distribution,
z—h(x) o o .
| Ty F)dy = oF (@) ase— . (21)
h(z)

for any functionh(xz) — oo such thati(z) < x/2 (see, e.g.[118]).
Now we estimate the third term on the right[in(17) using ctadi(4):

Py <P{cr >z} = o(F(z)) asz — oo. (22)

Altogether relationd (18)[(20), and (22) complete the podd heoreni 1.
Now we provide an example where

P{S; >z} .
F(x)

given that condition[(4) is satisfied only with= E£ > 0 and not with any biggec. Assume
that F' is a Weibull distribution on the positive half line with panaters < (1/2,1), that is
F(z) = e’ LetT have a distribution such thB{cr > 2} ~ 2~ 'e=*" asz — co. Write down
the following lower bound:

P{S, >z} > P{S.>zlet > 2 — Vz}P{cr > x —/z}.
By the Central Limit Theorem,

Hence,
lim inf M > {§liminf Pier i Vo)
timint &
- RS Tz

because? > 1/2.

We conclude this section by an example showing that the asiuri of Theorerall cannot hold
for all subexponential distributions. Indeed, takewith negative mean as described in Theorem
[4. Without loss of generality we assume that the seﬂ%m,gl In ny converge. Consider taking
valuesn;, with probabilitiesc In? nk/nz, herec is the normalising constant. Thenhas a finite
mean, but

2

ny — In? ny
P{S; >z} > P{S,, >z }P{r =ni} > o F(rg)———,
k

g,

so that, ag — oo,

P{ST > wk} .

F(xy)

13



5. The case where £ and 7 may be tail-comparable

In this section we do not assume conditibh (4) to hold, sudtuatsn is of particular impor-
tance for branching processes. To start with, we define tvporitant classes of distributions.

A distribution F' is calleddominated varyingf there existsc such thatF’(z) < cF(2x) for all
z. It is known that any long-tailed and dominated varyingrilisttion with a finite mean belongs
to the class¥*, see[[18].

We say that a distributioty’ is intermediate regularly varyingat infinity) if

G((1—e¢)x) ' (23)

€l0 x—»oop G((ﬂ)

In particular, any regularly varying at infinity distribati satisfies the latter relation. Any interme-
diate regularly varying distribution is long-tailed andwioated varying; in particular, it belongs
to the class?’*, provided its mean is finite.

Theorem 7. LetF' € .*, E > 0, and
F(x) = O(P{r > z}) asx — oc. (24)
If the distribution ofr is intermediate regularly varying, then
P{S, > 2} ~ P{M, > 2} ~ ETF(2) + P{r > 2/E{} asz — cc. (25)

We strongly believe that the statement of the theorem stalid in a more general setting
where the distribution of is assumed to bequare-root insensitivehat isP{r > = + \/z} ~
P{r > z}, and the variance df is finite. Probably, some further minor regularity assummi
are required. For example, the Weibull distributibifr) = e~ with parameterd < 1/2is
square-root insensitive. For distribution whichnist square-root insensitive, the asymptotics are
different and more complicated.

Proof of Theorerhl7By (23), for any fixedd > 0, we can choose < E¢ andc > E¢ sufficiently
close toE¢ such that

.. . Plar >z} . P{cr >z}
_ < i Sel i BN i S B
L=o/2 s iminf Ry S Imsup 5 — R

<1446/2.
Then, due taS,; < M., itis sufficient to prove the following lower bound for thensu
P{S, >z} > (ET+0(1))F(z)+ (1+0(1))P{r > z/a}. (26)
and the upper bound for the maximum
P{M, >z} < (Er+o0(1)F(z)+ (1+0(1))P{r > z/c} asz — oc. (27)
We have

P{S; >z} = P{S;>z,7<z/a}+P{S; >x,7>x/a}.

Sincea < E¢, P{S; > z|t > z/a} — 1 asx — oo, by the Law of Large Numbers. Now the
standard arguments lead [0](26).

14



To prove the upper bound, we use a representation simildiio(¢ee the previous proof):

P{M, >z} = P{M;>xz,7<N(@)}+P{M, >z,7€ (N(x),z/c} +P{M; > z,cr >z}
= P+ P+ P

The first summand® can be treated as ealier. The second summandan be estimated as
follows: if condition [24) holds then, by estimafe [19),
bx/c
Py < KK2/ P{r >z — y}P{r > y}dy,
N(z)E&
for someKs. Since the distribution of is intermediate regularly varying and, therefore, belongs
to .¥*,

Py, = o(P{T > x}).

Taking into account also thd®; < P{cr > z}, we finally get

P{M, >z} < (Et+0(1))F(z)+P{r >z/c}+ o(P{r > x}) asz — <.
Since the distribution of is (in particular) dominated varyin®{r > z} = O(P{r > z/c}).
Therefore,[(2]7) is proved and the conclusion of Thedrem .

Theorem 8. Let E¢ > 0 and letT have an intermediate regularly varying distribution. lfeth
distribution F' is long-tailed and dominated varying, th€2g) holds.

A particular corollary is that if bottf and+ have regularly varying tail distributions, then
asymptotics[(25) hold; this result was proved by Sthm [37eoFems 1.3 and 1.4] for positive
¢ and by A. Borovkov and K. Borovko\ [3, Section 7.1] for signedAlso, Theorem§l7 and 8
generalise and improve Theorem 1.3 of AleSkevitena!. [J.

Proof of Theorerhl8lt follows the lines of the previous proof, and only the teftnneeds a dif-
ferent estimation. From bound (19), we get
o bz/c
P, < KF(x— bx/c)/ P{cr > y}dy.
N(z)Eg
SinceF is dominated varyingF (z — bz /c) = O(F(z)) asx — oo. Therefore,P, = o(F(z))
and the proof is complete.

6. Applicationsto the branching processes

A Galton—Watson process is a stochastic pro¢ess} which evolves according to the recur-
rence formulaX, = 1 and

Xn
X = g™,
j=1

where{gj(.”)} is a family of independent identically distributed non-atge integer-valued ran-
dom variables with a finite mean, and their common distrdsutdoes not depend on Here X,
is the number of items in theth generation. Taking into account that any intermediat@legly
varying distribution with finite mean belongs to the clags, we obtain the following application
of TheoreniV to the branching process:

15



Corollary 2. Let the common distribution d@fs be intermediate regularly varying. Then, as
T — 00,

P{Xy >z} ~ E{P{¢ > 2} + P{{ > z/E¢(}.
In particular, if the branching processdstical, i.e. if E€ = 1, then
P{Xs >z} ~ 2P{{ > z} asz — oc.

More generally, by induction arguments, the tail of therdisttion of the number of items in the
nth generation is asymptotically equivalentt®{¢ > x=}. A similar result (for critical process)
was obtained i [38, Theorem 2] in the case of regularly vayyiistribution of¢’s and for possibly

growingn.

7. Equivalencesin the case where a counting random variable 7 may depend on £'s

We continue to assume that random varialjlgs are independent and identically distributed.
For any family= of random variables, denote by=) the o-algebra generated k. Tradition-
ally, a counting random variabte is called astopping timefor a sequencgé, } if {r < n} €
o(&1,...,&,) for all n.

We say that a counting random variableloes not depend on the future of the sequ€ggé
if the family (&1,...,&,, I{T < n}) does not depend ofg;,j > n + 1) for all n. Dependence
of this type goes back to Kolmogorov and ProkhorioM [19] whaved Wald's identity under the
condition that the everftr < n} does not depend ofy for all n» > 1 andj > n + 1.

Provided independence 6%, any stopping time- does not depend on the future of the se-
quence{¢,, }. If a counting random variable does not depend ofis, then it does not depend on
the future of the sequendg,, }.

Let.%, be afiltration ofr-algebras. A counting random variabiés called a stopping time for
this filtration if {7 < n} € %, for all n. In this terminology;r is a stopping time for a sequence
{&,} if and only if 7 is a stopping time for the natural filtratioft,, = o (&1, . .., &).

Consider a special filtratior#,, = o (&, I{7 = k},k < n). Thent is a stopping time for
this filtration. In addition,r does not depend on the future of the sequeftg if and only if
(&, > n+ 1) does not depend ofF,, for all n.

We start with a result for a bounded counting stopping tineegh that a random variable is
boundedf its distribution has a bounded support).

Theorem 9. Let £ have a subexponential distributiali on R (we do not assume finite mean),
and let the counting variable do not depend on the future. #fis bounded, the®{S; > z} ~
E7F(x) asx — oo.

Similar result forAM. may be found in[[14, Theorem 1]. Note that one cannot expedatiher
asymptotics to hold for any with unbounded support, which may depend{@p} — even for a
stopping time. Indeed, consider a stopping time- min{n : S, < 0}. If E¢ < 0 thenET is
finite butP{S; > 2} = 0 for anyz > 0.

Proof. We adopt the corresponding proof from Greenwdaod [16] whes®pping time and regu-
larly varying tails were considered. L&t be such thaP{r < N} = 1. The starting point of the
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proof is the following representation:

N
P{S, >z} = > (P{Sy>z,7>n}—P{S,>z,7>n+1}
n=1
N
= P{S1>z,7>1}+ Z(P{Sn >z, 7>n}—P{S,_1>xz,7>n}).
n=2
Therefore,
N
P{S.>x2} = F(z)+ Z(P{Sn_l <z, >z,7>n}—P{S_1 >x,5, <z,7>n}).
n=2
Now it suffices to show that, for eaeh
P=P{S,_1<x,S,>x,7>n} ~ F(x)P{r>n} (28)
and
Po=P{S,_1 >S5, <x,7>n} = ofF(x)). (29)

The subexponentiality of’ implies that, for each. > 2,

P{S, >z} ~ nF(z) asr— occ. (30)
In particular, there existssuch that, foralh = 2,..., N,
P{S, >z} < cF(zx) forallz. (31)

The subexponentiality of also implies, for anyd(z) — oo such thatF'(x + A(z)) ~ F(x),

z+A(x) . .
/ F(x —y)F(dy) = o(F(z)) asz— oc. (32)
A(x)

To establish[(28), we first note thét > n} = {r <n — 1} and thuso(S,—1,I{T > n})
does not depend of3,, sincer does not depend on the future. This implies

P1 == / P{Sn—lG(w_yam]>£n€dya7_2n}
0

— [ P{Sir € ool = n ).
0
We use the following decompositiord, > 0:

A z+A o}
P = / _|_/ _|-/ P{S,_1 € (z —y,z],7 > n}F(dy)
0 A T+A
= h+ DL+ (33)

By (30) and by the long-tailedness Bf for any fixedA,
I < P{S,1€(x— Az} =0(F(x)) asr— oo. (34)
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By (31)) and[(3R) we get, fod = A(x) — oo,

r+A
L < / P{S,_1 >z — y}F(dy)
A

z+A
< c/ " F(z —y)F(dy) = o(F(z)) asz — oo. (35)
A

Uniformly iny > = + A(z), P{S,-1 € (x —y,z],7 > n} — P{r > n} asz — oo. Thus,
I3y ~ P{r>n}F(z+ A(x)) ~P{r >n}F(z) asz— cc. (36)

Substituting [(34)-£(36) intd (33) we g&t(28).
To prove [29) we note that

Py < P{Su_1€(z,x+ A} +P{S,_1 >z + AYF(—A).

As in (34), the first term on the right is of ordefF'(z)). Due to [31), the second term is not
greater tharcF(z)F(—A) where F(—A) can be made as small as we please by the choice of
sufficiently largeA. The proof is complete.

Here is our general result for a counting random variabléwaossibly, unbounded support.

Theorem 10. LetE|{| < co and let a counting variable do not depend on the future. Assume
that /' € .* and that there exists an increasing functibfx) such that

F(x+h(z)) ~ F(x) and P{r > h(x)} =o(F(z)) asz — oo. (37)
ThenP{S, > x} ~ ETF(x) asz — 0.

Proof of Theoren_ID follows from Lemmas 1 abhd 2 belo@ondition [37) is stronger than con-
dition (4). At the end of this section, we provide an examgla stopping time which shows that
condition [37) is essential and cannot be weakened to (4).

Lemma l. LetE¢ > 0 and let a counting variable do not depend on the future. K is long-
tailed then

liminfm > Er.

If, in addition, F' € .#* and condition(37) holds, therP{S, > z} ~ ETF(z) asxz — oc.

Proof. Fix a positive integefV and a positived. The following lower bound holds, for > A:

N
P{S, >a} > > P{Si,...,Sj1€[-AA,§ >z +24,8 > 2,7 > j}
j=1
N
> Y P{S,....8 1€ [-A AL > ©+24,min(S; - ) > —A, 7 > j}.
- 1>]
J=1
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Since{r > j} = {r < j — 1} and sincer does not depend on the future,

N

P{ST > x} > E P{Sl, .. .,Sj_l S [—A,A],T > ]}P{fj >x + 2A,H1>in(5i - Sj) > —A}
- 1>]
J=1

N
= F(z+ 2A)P{min $; > —A}Y P{Sy,...,S;1 € [-A AT > j}.
1> j:l

By the long-tailedness af,

P{s,
lim inf M

e T F()

N
> P{Izﬂzl{lsz > _A}E:lP{Sh aSj—l € [_A7 A]>T Zj}
]:

Since the mean df is positive,P{min;>; S; > —A} — 1asA — oo. Hence, for anyV,

P{S,
lim inf M

N
minf ——— 2 ;P{sz}-

Letting nowN — oo completes the proof of the lower bound.
The upper bound,

P{S;
lim sup 7{%(>)w} < Er,
r—00 X

follows from [13, Corollary 3] which states that, under tlomditionsF' € .* and [37).P{M, >
r} ~ F(z)ET asz — co. The proof is complete.
Lemma 2. LetE{ < 0 and let a counting variable do not depend on the future. K € &%,
then

P{S; >z}

limsup———— < Er.

Under the additional conditio@37), P{S, > z} ~ ETF(z) asx — oo.

Proof. The upper bound follows froni [15, Corollary 3] in the same veaythe upper bound in
the previous proof. To obtain the lower bound, take any pesit and consider a random walk
Sy = Sp + n(|E{| + €) with a positive drift. We have

P{S, >z} = P{S;>z+ (B +e)7}
> P{S, >+ (|BE| 4 e)h(x)} — P{r > h(z)}.

Here the last term in the right side iF (z)) and, by Lemmall, the first term is equivalent to
E7F(x + (JE¢| + €)h(x)) ~ ETF(z) asx — oo. This completes the proof.
For intermediate regularly varying tail distributions,eéldreni 10 implies the following

Corollary 3. LetE|¢| < oo and let a counting variable do not depend on the future. Assume
that £ is an intermediate regularly varying distribution and that

P{r>x} = o(F(x)) asz— oo. (38)
ThenP{S, > x} ~ ETF(r) asx — oo.
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The latter corollary generalises the corresponding résultreenwood and Monroe L7, The-
orem 1] where a regularly varying and a stopping time were considered. IIh]5, Theorem 2], A.
Borovkov and Utev obtained an upper bound for the tail distion of S, assuming that both tail
distributions of¢; and ofr are bounded from above by the same dominated varying distib

Proof. From condition[(3B), for any > 0,

P{r>cx} = o(F(ez)) =o(F(z)) asz — oo,
sinceF is intermediate regularly varying. Thus, there exists amdasing functiorh(z) = o(x)

such thaP{r > h(z)} = o(F(x)) asz — oo. Again by the intermediate regular variation of

for any h(z) = o(z), F(x + h(x)) ~ F(z). So, condition[(37) is fulfilled and we can conclude
the desired asymptotics from Theoren 10.

We conclude with an example of a stopping timshowing that conditior (37) is essential for
the conclusion of Theorem 10. Consider a distributioon [1, o0). Take an increasing function
H(z) : R — Z7 such thatH (z) < x/2. The counting random variable = H(2¢1) + 1 is a
stopping time. On the eve§i > = — H(x) we haver > H(2(x — H(z))) + 1 > H(z) + 1.
Hence,

P{S; >z} >P{& >x—H(z),&+...+& > H(x)} =P{& >z — H(z)},

due to¢ > 1. For a Weibull type distribution, nameliy(z) = _“"’B, 0<pB<1,2>1,wecan
chooseH () in such a way thatf (z) = o(z) andH (z)/z'~# — oo asz — oo. Then condition
@) holds, but asymptoticE](3) does not, becaklige — H(x))/F(x) — oo and
P{S; >z}
F(z)

In this example there is no a functidiix) such that conditiori(37) holds. IndeedFifz—h(x)) ~
F(x) thenh(z) = o(z'=?) and H ! (h(x) — 1) = o(x) which implies

P{r > h(z)}/F(z) = P{H(2¢) > h(z) —1}/F(z) - < asz — oo.
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