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Abstract

The split of a multihop, point-to-point TCP connection consists in
replacing a plain, end-to-end TCP connection by a cascade of TCP
connections. In such a cascade, connection n feeds connection n + 1
through some proxy node n. This technique is used in a variety of
contexts. In overlay networks, proxies are often peers of the underlying
peer-to-peer network. split TCP is also already proposed and largely
adopted in wireless networks at the wired/wireless interface to separate
links with vastly different characteristics. In order to avoid losses in the
proxies, a backpressure mechanism is often used in this context.

In this paper we develop a model for such a split TCP connection
aimed at the analysis of throughput dynamics on both links as well as
of buffer occupancy in the proxy. The two main variants of split TCP
are considered: that with backpressure and that without. The study
consists of two parts: the first part is purely experimental and is based on
ns2 simulations. It allows us to identify complex interaction phenomena
between TCP flow rates and proxy buffer occupancy, which seem to have
been ignored by previous work on split TCP. The second part of the
paper is of a mathematical nature. We establish the basic equations that
govern the evolution of such a cascade and prove some of the experi-
mental observations made in the first part. In particular, we give the
conditions for system stability and we show the possibility of heavy tail
asymptotics for proxy buffer occupancy and delays in the stationary
regime.
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19.1 Introduction

The panorama of access network technologies has been changing at
an incredibly fast rate over the past few years, whilst almost any
substantial change intervened at transport layer, where TCP has become
a “standard de facto”.

However, the increasing user demand for high quality services spurs
development of performance-enhancing techniques to implement on top
of the pre-existing IP infrastructure.

Particularly powerful for content delivery and media streaming in
peer-to-peer systems, overlay networks have emerged as an attractive
solution for throughput improvement without any change of the
underlying network architecture.

One of the key features of overlay networks is the split-connection
mechanism, that yields a considerable throughput improvement for a
TCP connection when split in shorter segments on the route between the
sender and the receiver host. Intermediate nodes act as proxies: incoming
packets are locally acknowledged on each segment (LACKs), then stored
and forwarded on the next TCP connection.

In the context of overlay networks, split TCP is addressed in [5] and
[19], where, in addition, a backpressure mechanism is proposed to limit
the sending rate to the forwarding rate in presence of saturated proxy
buffer, thus preventing buffer overflows. In other contexts, split TCP
has been shown to be particularly effective when the sender-to-receiver
route includes network segments with very different characteristics, like
wired and wireless links, that usually cause problems to TCP. In fact,
the “split connection” approach was initially proposed in the context of
wireless networks where a significant throughput degradation has been
observed for TCP. The poor TCP performance in wireless networks is to
ascribe to the congestion control that wrongly attributes to congestion
losses due to link failures (consequence of mobility or channel errors),
or is related to high propagation delays that slacken the growth of the
congestion window. In the seminal work of [9] and [10] a new implemen-
tation of TCP was proposed, Indirect TCP (I-TCP), which handles the
problem of wired-wireless link interaction and introduces the concept
of split TCP. Two TCP connections in tandem replace the single TCP
connection: the first running on the wired side, the second one running
over the wireless link and characterized by different parameters to
cope better with larger delays and channel losses. The same approach
has been drawn on in [18] where the split TCP scheme is adapted to
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mobile ad hoc networks to cope with the additional issue of a dynamic
placement of the proxy. The aim of the “split-connection” approach
is to operate a clear separation between flow control and congestion
control functionalities over two different network environments. Similar
issues have been studied in satellite networks ([20], [16]) where long
propagation delays cause TCP throughput degradation by lengthening
the slow start duration and slowing the linear growth of the congestion
window in the congestion avoidance phase. Such throughput limitations
are aggravated by frequent losses related to channel errors or temporary
link disconnections. In this context, proxies with specific capabilities,
called performance enhancing proxies (PEP), have been introduced to
perform a transport layer connection split oblivious to end systems
(cf. [25]). Among all the approaches that attempt to isolate issues
pertaining to different media, the split connection approach is the only
one that does not require any modification of standard TCP implemen-
tations, and for that reason it has been the subject of an in-depth study
in the literature. The diffusion and implementation of split-connection
techniques is documented by a recent measurement study ([28]) where
the authors detect, through the use of inference/detection methods,
the deployment of split TCP in all commercial networks they consider.
They also investigate the throughput improvement provided by split
TCP with respect to standard TCP implementation, that can be up
to 65%

The majority of related work on split TCP are either measurement or
simulation studies targeted to the throughput evaluation along a chain
of TCP connections. (e.g.[11]). There are only a few analytical attempts
in the literature which study split TCP’s dynamics.

In [29] the authors study a particular class of split-connection
approaches in wired/wireless networks, that adopts a standard version of
TCP on wired segment and an “ad hoc” lightweight transport protocol
for the wireless hop. In [27] an estimate of the expected throughput is
provided for a cascade of standard TCP connections based on the well
known square root formula, thus neglecting the dependencies between
the two connections. Similar models based on the square root formula
for TCP throughput estimation are presented in [15], [19] and [26],
where the authors make the assumption that the buffer in the proxy
never empties nor fills.

In this work, we make the following analytical contributions: we
establish the equations for throughput dynamics jointly with that
of buffer occupancy in the proxy. We then determine the stability
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conditions by exploiting some intrinsic monotonicity and continuity
properties of the system. Finally, we focus on the study of buffer
occupancy in the proxy and end-to-end delays to derive tail asymptotics.
The framework allows us to consider both the case with an infinite buffer
at the proxy and that of a limited buffer size, where a backpressure
algorithm is needed to limit the sender rate and avoid losses in the
proxy.

The paper consist of two parts: the first part (Sections 19.2 and
19.3) exploits some simulation results to make some basic observations
on the system dynamics in different scenarios. We identify there the
complex interaction that exists between TCP flow rates and proxy buffer
occupancy. To the best of our knowledge, this problem is addressed
here for the first time and finds an analytical explanation in the second
mathematical part of the paper, where we emphasize the role of the
buffer size on the total throughput gain for the split. The second
part (Section 19.4) contains further mathematical results such as the
equations governing the overall dynamics, the stability condition for
the case without backpressure. We also compute the tail asymptotics
for proxy buffer occupancy and delays in the stationary regime and
show that they are surprisingly heavy-tailed under certain natural
statistical assumptions of the literature. Finally, Section 19.5 is devoted
to discussions on future studies and concludes the paper.

19.2 Simulation scenarios

S

Round trip time : R
1

TCP 1

Ack

   Split  point
Round trip time : R

TCP 2

2

D
Ack

Fig. 19.1. split TCP network scheme.

19.2.1 Network scheme

We consider a saturated traffic source S that sends packets to the
destination D through two long-lived TCP-Reno connections TCP1,
TCP2 in cascade as in Figure 19.1. Due to the fact that S is saturated,
TCP1 always has packets to send.
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A layer-4 proxy is placed in the middle and forwards packets from
the first link to the second one, sending local acknowledgments to S

(LACKs). It prevents the loss of packets that cannot be immediately
forwarded on the second link by storing them temporarily in a buffer.
When the buffer approaches its maximal capacity, a backpressure
mechanism limits the sender rate. The flow control is accomplished
through the advertised window indication present on the acknowl-
edgements sent back to the sender S. The transmission window of
S is then regulated according to the minimum between the current
congestion window and the advertised receiver window. Therefore, as
the buffer occupancy approaches the buffer capacity, the backpressure
algorithm timely starts working and prevents buffer overflows. In the
ns2 simulator, the backpressure algorithm is implemented by means of
ack notifications to the sender of the instantaneous available space in
the proxy buffer (RFC compliant).

19.2.2 Assumptions and notation

In the following we introduce the notation that will be used throughout
the paper and the assumptions shared by the simulation setting and,
thereinafter, by the model.

• The TCP connections are assumed to be in congestion avoidance phase,
thus neglecting the initial slow start.

• X(t), Y (t) respectively denote TCP1, TCP2 rates at time t.
• The proxy buffer has size B. We will generally assume a limited buffer

size, though the mathematical part also considers the ideal case of
B = ∞.

• The local round trip times, R1, R2 (of TCP1, TCP2, respectively) are
assumed to be constant, equal to twice the local propagation delay.

• Losses are modelled by two kinds of Poisson processes:
- homogeneous Poisson processes with constant intensities λ0, µ0,
which will be referred to as the rate independent (RI) case.
- inhomogeneous Poisson processes with (stochastic) intensities
λ1X(t), µ1Y (t), proportional to the rates X(t) and Y (t), a case that
will be referred to as the rate dependent (RD) case;

Concerning the loss process assumptions, the RI case corresponds to
the physical layer loss pattern of wireless links (fast/slow fading) or some
DSL links (multi-users interference), whereas the RD case fits well with
the cases where there is a PER (packet error rate) due to congestion
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(cf. [7]). For example, the self congestion that arises in slow access links.
In addition, these models allow one to consider at the same time both
transmission error losses and congestion losses. Some interesting models
are hybridations of the above simple cases. Here is a typical example
to be used in what follows: TCP1 is a fast-wired link with a RD loss
process and TCP2 is a slow DSL or wireless link with RI losses.

19.2.3 Scenarios

The following three scenarios focus on a cascade of two TCP connections.
They correspond to different network settings, and contexts of
application of split TCP.

• The slow sender fast forwarder case (SF).
When the first TCP connection is “slower” than the second one, i.e.
it has a smaller capacity and/or longer RTT and/or higher loss rate,
we are in what we call the “SF” scenario. It can be the case in overlay
networks, where the traffic of the first TCP connection is forwarded
on a faster TCP connection.

• The fast sender slow forwarder case (FS).
We call the “FS” case, the scenario where TCP1 is “faster” than
TCP2. It is the case in hybrid wired/wireless scenarios where the
faster reliable wired connection forwards its traffic to a slower lossy
wireless connection. In the case of a wired/satellite configurations,
in addition, the wireless part is characterized by higher propagation
delays. The example where TCP1 is a fast link with a RD loss process
and TCP2 is a slow one with RI losses will be referred to as the
FS-RD/RI example.

• The symmetric case.
In the wired/wireless cascade, the two TCP connections are strongly
asymmetric, as the two media are notably different. In overlay
networks, instead, it can happen for a long TCP connection to be
split in smaller symmetric segments. In this setting, the two links
have about the same characteristics.

19.2.4 Performance metrics

The majority of related work on split TCP are experimental evaluations
of the throughput improvement achieved by splitting connection
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techniques. In addition to the throughput metric, our work is focused
on the analysis of buffer occupancy in the proxy and on packet delays.

19.3 Simulation results

In this section we present a set of ns2 simulations to illustrate the
temporal evolution of congestion windows of TCP1 and TCP2 as well
as the proxy buffer occupancy in the three cases mentioned above.

19.3.1 Rates

Let us start with a rather “symmetric” case, where the links have the
same rate, C1 =C2 = 100 Mbps, similar propagation delays, R1 = 100 ms,
R2 = 90 ms, and where losses are generated according to homogeneous
(RI) Poisson processes with intensity λ=µ= 0.3 losses/s. The proxy
buffer can store B = 15 pkts and we assume a constant packet size equal
to 1500 bytes. Figure 19.2 shows the ns2 simulation of the congestion
window patterns in Congestion Avoidance phase, together with the
buffer occupancy Q(t) in the proxy.

Looking at the buffer dynamics in Figure 19.2, we remark that:

Observation 19.1 The rate of TCP1 and TCP2 interact through the
buffer occupancy. One can distinguish three operational phases:

(PH1) as long as the buffer is neither empty nor full, TCP rates X,Y

follow the AIMD rule, i.e. they linearly increase until a jump
occurs and halves the rate;

(PH2) the rate of TCP2, Y exhibits a nonlinear growth when the
buffer is empty;

(PH3) the rate of TCP1, X exhibits a nonlinear growth when the
buffer approaches saturation.

In Figures 19.3 and 19.4, we plot the congestion windows and the
proxy buffer occupancy in the SF and FS cases, respectively. In the
SF case we maintain the same links capacities (C1 =C2 = 100 Mbps),
the round trip times are R1 = 90 ms, R2 = 30 ms, and loss intensities are
λ=µ= 0.4 losses/s (still under the assumption of RI losses). The FS

case is characterized by R1 = 40 ms, R2 = 80 ms, and λ0 = 0.4 losses/s,
µ0 = 0.2 losses/s. In both cases, the proxy buffer size is B = 20 pkts. We
observe that in both cases, the dynamics of one of the three possible
phases can be neglected w.r.t. the others. In the FS scenario the buffer
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Fig. 19.2. Congestion windows and buffer occupancy in the symmetric case.
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Table 19.1. Impact of buffer size on stationary throughput averages.

B Mean throughput Throughput
(pkt) (pkt/s) improvement

1 780 —
5 1415 81%
10 1840 136%
20 2285 193%
50 2954 278%
100 3340 328 %
1000 3340 328 %

hardly ever empties, therefore the duration of phase 2 is negligible when
compared to the other phases, whereas in the SF it is the opposite
scenario: the buffer is rarely close to saturation, hence phase 3 is almost
never visible. Therefore, we will consider later SF/FS cases with large
buffers where only phases 1–2 and 1–3 are taken into account, respec-
tively.

The nonlinear behavior of X or Y bears evidence of the fact that the
two TCP connections interact. In particular, the window of TCP2 (and
therefore its rate) evolves not only according to the windows dynamics
of TCP, but also according to the availability of packets in the proxy.
Similarly, the window of TCP1 (and therefore its rate) evolves not only
according to the AIMD rule, but also according to the availability of
space in the receiver buffer, advertised by the proxy to the source S via
the backpressure mechanism.

In observation 19.1, we have already remarked the role of the buffer
content on the interaction between TCP1 and TCP2. In Table 19.1
we report the mean values of total throughput in steady state for
different values of the buffer size in a SF case. Here C1 =C2 = 100 Mbps,
R1 = 40 ms, R2 = 20 ms, λ0 =µ0 = 0.4 losses/s. Compared to the extreme
case of B = 1 pkt, we remark a large improvement of total throughput
as buffer size increases. At the other extreme, when B is large enough
to never saturate, the total thoughput reaches its maximum value,
which corresponds to the throughput of TCP1 in isolation (the last
is computed via the mean throughput formula in Section 19.4.2). An
important consideration follows:

Observation 19.2 In the RI case, the end-to-end throughput of split
TCP increases with the proxy buffer size.
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A large buffer size is beneficial to the total throughput, in that it makes
it less common to use the flow control of the backpressure mechanism
and it reduces the probability for the buffer to empty, which limits the
forwarding rate.

On the TCP rates we observe that:

Observation 19.3 In the finite buffer backpressure case, the long term
average of TCP1 coincides with that of TCP2 and is strictly smaller
than that of each connection in isolation.

This is in contrast with the throughput estimation provided in [15],
[26] and [27], through the application of the square root formula. These
works rely on the assumption that the two connections are independent
and evaluate the overall throughput as the minimum of the throughputs
of each connection taken in isolation. As shown in the last table, such
a minimum rule is in fact the best case and a significant throughput
degradation can be observed w.r.t. this rule in the presence of small
buffer size.

The simulation results presented so far share the assumption of RI
losses, though all considerations still hold for the RD case. We report
in Figure 19.5 a symmetric RD scenario with the following parameters:
C1 =C2 = 100 Mbps, R1 =R2 = 60 ms, λ1 =µ1 = 0.03, where all three
phases can be observed.

19.3.2 Buffer occupancy

We present here the statistical analysis of the buffer occupancy in steady
state and when B = ∞. In order to guarantee the existence of a steady
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Fig. 19.7. α-Confidence intervals with α = 0.95.

state, we consider the SF case (we will give in due time the exact
conditions for such a steady state to exist). To infer some preliminary
information on the queue distribution, we made a fit with the R software
(free clone of S-plus) of the stationary queue distribution from the
samples extracted via ns2 simulation.

19.3.2.1 RI case

In the RI case, the R software suggests a Weibull distribution with shape
parameter 0.5; the last parameter was obtained through a maximum
likelihood estimator. We can then conjecture that:

Observation 19.4 In the RI case with B = ∞, when there is a
stationary regime, the stationary buffer occupancy exhibits a heavy tail.

The presence of possible heaviness in the queue tail motivated a
further inspection of the moments of Q by means of statistical methods
suitable for heavy-tailed distributions.

For this purpose, two statistics were employed: the Hill plot and the
R statistic (see definitions an further details of the analysis in [6]).
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In Figure 19.6 we plot the parameter γ of the Hill estimator in the
above SF scenario. It rapidly converges to a value between 0 and 1,
which indicates a Pareto-like distribution with infinite second moment.
In contrast with this result, the same figure also shows the R statistic
for the second moment of the tail distribution, computed on the same
set of samples; the fact that it becomes zero supports the thesis of
the finiteness of the second moment. The discrepancy between these
two results can be explained by looking at α-confidence intervals for
the Pareto distribution or for the above-mentioned Weibull distribution
in this example. We observe in Figure 19.7 that the 0.95-confidence
intervals of a Pareto distribution with α = 0.5 and a Weibull distribution
with shape parameter 0.5 largely overlap in a way which compromises
the inference of the tail distribution. In conclusion, we showed that these
statistical methods aimed at the identification of the shape of these
heavy tails provide discordant answers.

19.3.2.2 RD case

In the RD case both the Hill plot and the R statistic agree that the
distribution of the buffer occupancy has all finite moments. We report
in Figure 19.8, the Hill plot and the R statistic for the second moment
of the distribution in a SF scenario with such RD losses. The results of
statistical test in the RD case allows us to observe that:

Observation 19.5 In the RD case, the buffer occupancy exhibits a light
tail decay.
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Fig. 19.8. Hill plot for the RD case.

19.4 Mathematical analysis

In this part, we first establish the differential equations which govern the
joint evolution of the windows and the rates of the connections and of the
buffer content. We then give formal proofs for some of the experimental
observations made in the previous sections and add further results. More
precisely:
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• We address the stability issue, in case of infinite buffers and no
backpressure (which is the only case where the stability question is of
interest).

• We analyze the tail asymptotics for the buffer occupancy as well as
for end-to-end delays.

• We prove that in the finite buffer, backpressured case, the stationary
throughput is strictly less than the minimum of the stationary
throughput of each connection in isolation.

19.4.1 The single connection model

Let us now briefly revisit the models of [8] and [7] for a single TCP
connection. In the congestion avoidance phase, the evolution of the TCP
congestion window is described through the following “hybrid” differ-
ential equation:

dW (t) =
dt
R

− W (t)
2

N(dt) (19.1)

which states that the window increase between two loss events is linear
with slope 1/R, where R denotes the round trip time and that loss events
produce jumps of the congestion windows which is cut by half. In this
stochastic differential equation, N(t) represents the loss point process.
We assume here that this point process has a stochastic intensity (w.r.t.
the natural history of W (t) – see [4] for the definition of stochastic
intensity), which is either constant or proportional to W (t) depending
on the case we consider (RI/RD).

Linked to the congestion window we define the instantaneous rate
or throughput (here the two words are interchangeable), as X(t) =
W (t)/R, a generally accepted assumption in the literature, which can
be seen as an avatar of Little’s law. The rationale for the linear increase
is as follows: TCP stipulates that in the congestion avoidance phase, the
window is increased of 1 unit every W ack. In an infinitesimal interval of
length dt, the number of acks that arrive is X(t)dt. Hence the window
increases of X(t)dt/W (t) = dt/R. The rationale for the halving of the
window in case of a loss is just the multiplicative decrease rule. Systems
evolving according to eq. (19.1) were also studied in [22] and [1].
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19.4.2 Mean throughput in steady state

The stationary distribution of the rate of each TCP connection
in isolation has an analytical expression. In particular, the mean
throughput of TCP1 (resp. TCP2), in isolation is given by X̄ = 2α/λ
[resp. Ȳ = 2β/µ], where α = 1/R2

1, β = 1/R2
2. This result follows from

the fact that X(t) − αt + λ
2

∫ t

0 X(u)du is a martingale (cfr.[6]). Thanks
to the PASTA property, the mean value E0

N [X(0−)] of the stationary
rate just before a loss is equal to stationary rate in continuous time X̄.
Using this and the fact that the packet loss probability is p = λ/X̄, we
obtain the square root formula

X̄ =
√

2α
p

,

(
resp. Ȳ =

√
2β
q

)
. (19.2)

In [8], the following square root formula is derived for the RD case:

X̄ = Φ
√

α

λ
,

(
resp. Ȳ = Φ

√
β

µ

)
, (19.3)

where Φ =
√

2
π

∑∞
i=0(

∏i
j=1(1−4j))−1

∑∞
i=0(

∏i
j=1(1−4j))−12i ≈ 1.309. The mean throughput

formulas in the RI and RD case have also appeared respectively in [2]
and [24].

19.4.3 The split connection model

Let now introduce the stochastic equations for the split connection
model.

With respect to the case of a single TCP connection, as observed in
observation 19.1 there are three operational phases.

• Phase 1 or the free phase, where the buffer is neither empty nor full,
and X(t) and Y (t) evolve independently;

• Phase 2 or the starvation phase, when the buffer is empty and Y is
limited by the input rate X.

• Phase 3 or the backpressure phase, when the buffer has reached its
storage capacity B and X is forced by the backpressure algorithm to
slow down to the rate Y at which the buffer is drained off.

In the free phase, the AIMD rule gives:

on {0 < Q(t) < B}
{

dX(t) = αdt − X(t)
2 M(dt)

dY (t) = βdt − Y (t)
2 N(dt).

(19.4)
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In the starvation phase, as long as the buffer is empty (which requires
that X(t) ≤ Y (t)), we have:

on {Q(t) = 0}
{

dX(t) = αdt − X(t)
2 M(dt)

dY (t) = βX(t)
Y (t)dt − Y (t)

2 N(dt).
(19.5)

where M(t), N(t) represent the loss processes on X and Y . The rationale
for a linear increase of Y (t) proportional to X(t)

Y (t) < 1 is that when
the buffer is empty, since X(t) < Y (t), the rate at which packets are
injected in TCP2 and hence the rate at which TCP2 acks arrive is
X(t). Hence the window of TCP2, W2, increases of X(t)dt/W2(t) =
dt X(t)

R2Y (t) in the interval (t, t+dt) and the rate of TCP2 thus increases of

βdtX(t)
Y (t) during this interval. The ratio X(t)/Y (t) can be interpreted as

the utilization factor of the congestion window W2(t): in contrast with
what happens in the free phase, where TCP2 is “independent” of TCP1
and where the window W2 is fully utilized (draining packets from the
buffer), in the starvation phase, the number of packets transmitted by
TCP2 depends on X(t), which brings the utilization factor below 1 and
leads to a nonlinear evolution as observed in observation 19.1.

In the backpressure phase, which lasts until the buffer is saturated
(this requires that X(t) ≥ Y (t)), we have

on {Q(t) = B}
{

dX(t) = α Y (t)
X(t)dt − X(t)

2 M(dt)

dY (t) = βdt − Y (t)
2 N(dt).

(19.6)

The rationale for this should be clear: acks of TCP1 now come back at
a rate of Y (t). Hence the congestion window, W1(t) of TCP1 grows at
the rate Y (t)/W1(t).

The evolution of the buffer occupancy in the proxy within phase 1
(Q(t) > 0) is given by

Q(t) = Q(0) +
∫ t

0
(X(u) − Y (u))du. (19.7)

Note that the queue at the proxy can be seen as a fluid queue with a
fluid input rate X(t) and a fluid output rate Y (t) at time t. Hence we
can also write:

Q(t) = max
(

sup
0≤u≤t

∫ t

u

(X(v) − Y (v))dv,

Q(0) +
∫ t

0
(X(u) − Y (u))du

)
. (19.8)
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Fig. 19.9. Congestion windows: comparison between the model and ns2.

Figure 19.9 shows the perfect agreement between the evolution of
congestion windows as predicted by equations (19.4)–(19.7) or provided
by ns2 simulations.

19.4.4 Stability in the infinite buffer, RI case

This subsection is focused on the case B = ∞, where only phase 1 and
2 exist. A natural question within this infinite buffer context is that
of system stability, which is understood here as the finiteness of the
stationary buffer occupancy at the proxy. In the stable case, this infinite
buffer model is a good approximation of the SF case, whenever B is not
too small (we have seen in Section 19.3 that in this case, phase 3 is almost
never visited and that we can focus on phase 1/phase 2 dynamics). In
the RI case, the stability proofs rely on some monotonicity properties
which we introduce in the following paragraph.

19.4.4.1 Monotonicity properties in the RI case

Let us first consider sample paths of X(t) and Y (t) in case B = ∞,
where the dynamics is governed by (19.4) or (19.5) depending on Q(t).

We denote by Y f (“free Y”) some fictitious process which evolves
according to the dynamics of phase 1 only. In the RI case, we can actually
choose to make a coupling of Y f and Y by building these two processes
from the same realization of the Poisson point process N .

We can then state three main properties.

• If we consider two processes, Y f (t), Ŷ f (t) based on the same
realization of N , but departing from different initial conditions,
Y f (0)≤Ŷ f (0), then,Y f (t)≤Ŷ f (t),∀t ≥ 0.
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• If we consider the process Y f
v (t), t ≥ v which starts from 0 at time v,

then Y f
v1

(t) ≥ Y f
v2

(t), for all v1 < v2 ≤ t.

• If Y f (0) = Y (0), then Y (t) ≤ Y f (t), for all t ≥ 0.

The proofs of the first two properties should be clear. The last one follows
from the fact that in phase 2, X(t) ≤ Y (t), so that at any continuity
point, the slope of Y (t) is always less than or equal to the slope of Y f (t).
Since both processes have the same discontinuity points (thanks to the
coupling), the result immediately follows.

Consider now the case B finite with backpressure. The triple
(X(t), Y (t), Q(t)) forms a continuous time Markov process. Thanks to
the fact that Q is bounded from below by 0 and from above by B,
one can show that this Markov process admits a unique stationary
distribution, and that, starting from any initial value, this Markov
process converges to the stationary one in the total variation norm.

We again compare the processes (X(t), Y (t)) in the split TCP system
and the free processes (Xf (t), Y f (t)). We build these processes on the
same realizations of the point processes M and N . Assume the initial
conditions to be the same: (X(0), Y (0)) = (Xf (0), Y f (0)). When we
are in phase 1, the two processes have exactly the same dynamics, so
that if at the beginning of the phase, (X(.), Y (.)) ≤ (Xf (.), Y f (.))
coordinatewise, then this holds true at the end of the phase too. In
phase 2 (resp. 3), the slope of Y (resp. X) is strictly less than that
of Y f (resp. Xf ) and both are halved at the same epochs, whereas
X and Xf (resp. Y and Y f ) have exactly the same dynamics. Hence,
if (X(.), Y (.)) ≤ (Xf (.), Y f (.)) at the beginning of the phase, then
(X(.), Y (.)) < (Xf (.), Y f (.)) at the end. This leads to the following
confirmation of observation 19.3:

Lemma 19.6 In the RI case with B < ∞, when backpressure is used,
the stationary rate of split TCP is strictly less than the minimum of that
of TCP1 and TCP2 in isolation.

19.4.4.2 Queue bounds

The triple (X(t), Y (t), Q(t)) forms a Markov process. Interestingly
enough, the direct stability analysis of this Markov via Liapunov
functions is not an easy task. In particular, we were unable to make
use of the classical fluid limit techniques for Markov chains here,
primarily because of the multiple phases. This is the reason why we use
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backward construction techniques to prove stability. This will be done
by introducing two simple bounds on the queue size.

The proposed backward construction (see e.g. [4] Chapter 1 for
classical instances of such constructions) consists in building the queue
size Qt(0) at time 0 when departing from an appropriate initial condition
at time t < 0. The initial condition that we select consists of a queue size
Q(t) = 0, a rate for TCP1 which is the stationary rate X̃(t) of TCP1
at time t in isolation, and a rate for TCP2 which is the stationary rate
Ỹ f (t) of TCP2 at time t in isolation. From (19.8), we have

Qt(s) = sup
t≤u≤s

∫ s

u

(X̃(v) − Yt(v))dv, (19.9)

for all s ≥ t, where Yt(v) denotes the rate of TCP2 in the split TCP
system and at time v under the above assumptions.

The stability issue can then be stated in the following terms: does
Qt(0) have an almost surely (a.s.) finite limsup when t tends to −∞?
This is enough to ensure that the Markov chain (X(t), Y (t), Q(t)) is
neither transient nor null recurrent.

We are now in a position to define the lower bound queue. From
monotonicity property 3 and from (19.9), we get

Qt(0) ≥ Lt = sup
t≤u≤0

∫ 0

u

(X̃(v) − Ỹ f (v))dv, (19.10)

where Ỹ f (.) is the stationary free process for TCP2. In [6], we prove
that the stochastic process (X̃(t), Ỹ f (t)), which describes the fluid input
and the fluid drain in this queue, forms a stationary and geometrically
ergodic Harris chain. In particular we show there that we can apply the
splitting technique of Athreya and Ney (cfr.[3]) for such chains and that
there exist renewal cycles for this process related to its return times to
the compact set C = [0, x] × [0, 2β

α x], where x is an arbitrary positive
real number. In what follows, we will denote by T the length of such a
renewal cycle. We now define the upper bound queue. Let τ(t) denote the
beginning of the last busy period of Qt(s) before time 0 (0 if Qt(0) = 0
and t if Qt(s) > 0 for all t < s ≤ 0). We have

Qt(0) =
∫ 0

τ(t)
(X̃(v) − Yt(v))dv ≤

∫ 0

τ(t)
(X̃(v) − Y f

τ(t)(v))dv

≤ Ut = sup
t≤u≤0

∫ 0

u

(X̃(v) − Y f
t (v))dv, (19.11)
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where the first inequality follows from the fact that the dynamics on
(τ(t), 0) is that of the free phase and from the fact that Y f

τ(t)(.) is the
minimal value for the free TCP2 process (monotonicity property 1).

19.4.4.3 Stability

Lemma 19.7 If ρ < 1, where ρ = αµ0/βλ0, then the RI system is
stable. If ρ > 1, then it is unstable.

Proof We prove first that if ρ > 1, then the system is not stable.
The equation for Lt is that of a classical fluid queue with stationary
and jointly ergodic arrival and service processes. The joint ergodicity
follows from the fact that the couple (X̃, Ỹ f ) forms a Harris recurrent
and geometrically ergodic Markov process (see [6]). We can hence apply
classical results on fluid queues stating that under the above stationarity
and ergodicity properties, if E[X̃(0)] > E[Ỹ f (0)], then Lt tends a.s. to
∞, which in turn implies that we cannot have lim supt→∞ Qt(0) a.s.
finite. Hence ρ > 1 implies instability.

We now prove that if ρ < 1, then the system is stable.
Assume that lim supQt(0) = ∞ with a positive probability. Then
lim supUt = ∞ with a positive probability too. As X̃ and Y f

t are locally
integrable for all t, this together with the second monotonicity property
of the last subsection imply that there exists a sequence tn tending to
−∞ and such that a.s.∫ 0

tn

(X̃(v) − Y f
tn

(v))dv →n→∞ ∞. (19.12)

Let us show that this is not possible under the assumption ρ < 1. Let
θt denote the product shift of the point processes M and N (this shift
is ergodic). The pointwise ergodic theorem implies that

1
t

∫ 0

−t

X̃(v)dv =
1
t

∫ 0

−t

X̃(0) ◦ θvdv →t→∞ E[X̃(0)], (19.13)

where the last limit is in the a.s. sense. We show now that the following
a.s. limit also holds:

1
t

∫ 0

−t

Y f
−t(v)dv →t→∞ E[Ỹ f (0)]. (19.14)
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This will conclude the proof since equations (19.13)–(19.14) and the
assumption

E[X̃(0)] < E[Ỹ f (0)]

imply that a.s. limt→∞
∫ 0

−t
(X̃(v) − Y f

−t(v))dv = −∞, which contradicts
(19.12).

Let us now prove (19.14). From the monotonicity properties, the
function ϕt =

∫ 0
−t

Y f
−t(v)dv is super-additive: ϕt+s ≥ ϕt ◦ θ−s + ϕs.

Thanks to the sub-additive ergodic theorem, this together with the
fact that ϕt is integrable imply that a.s. ∃ limt→∞ 1

t

∫ 0
−t

Y f
−t(v)dv = K,

for some constant K which may be finite or infinite. The fact that K

is finite follows from the bound 0 < Y f
−t(v) ≤ Ỹ f (v) and from the

pointwise ergodic theorem applied to the stationary and ergodic process
{Ỹ f (v)}. Since K is finite, the last limit holds both a.s. and in L1 [21].
Using again super-additivity of the forward process, we get by the same
arguments:

K = lim
t

1
t

∫ 0

−t

Y f
−t(v)dv = lim

t
E
(

1
t

∫ t

0
Y f
0 (v)dv

)
.

But from the fact that Y f
0 (v), v ≥ 0 is a geometrically ergodic Markov

chain,

∃ lim
t→∞

1
t

∫ t

0
Y f
0 (v)dv = E[Ỹ f (0)] a.s.

Hence K=E[ ˜Y f (0)], which concludes the proof of (19.14).

19.4.5 Stability in the infinite buffer, RD case

In the RD case, we use the same backward construction as above to
prove the exact analogue of Lemma 19.7 (in the RD case, ρ is equal
to αµ1/βλ1). We only sketch the main ideas of the proof. To get an
upper bound on Qt(0), we consider the following optimization problem:
what is the infimum over all y > 0 of the integral

∫ 0
u
Y f

u,y(v)dv where
Y f

u,y(v) denotes the value of the free process of TCP2 at time v ≥ u

when starting from an initial value of y at time u? Let us first show that
the last optimization problem admits an a.s. unique solution y∗(u), and
that this solution is a.s. finite.

For defining such an infimum, we need the following construction
which builds the stochastic processes Yu,y(v), v ≥ u from a two
dimensional homogeneous Poisson point process N of intensity µ on
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Fig. 19.10. Coupling of the RD processes.

the positive half plane (t ∈ R, y ∈ R+). We start with Y f
u,y(u) = y

and then have a linear growth of slope β until we find a point of
N below the curve Y f

u,y(.). There we halve the value of Y f
u,y at that

time and we proceed again using the same rule of a linear growth
until the next point below the curve (see Fig. 19.10). It is easy to see
that the stochastic intensity of the losses is exactly µY f

u,y(t) at time t,
which is precisely what we want. With this construction, all Y f

u,y(t) are
defined as deterministic functions of N and the infimum over all y of∫ u+t

u
Y f

u,y(v)dv for fixed t > 0 and u is well defined in view of the fact
that the function y → ∫ u+t

u
Y f

u,y(v)dv is piecewise continuous, with a
finite number of discontinuities in any compact, is increasing between
discontinuities and tends to ∞ when y tends to ∞. Denote by Y ∗

u (v)
the function Y f

u,y∗(u)(v). Hence

Qt(0) ≤ Ut = sup
t≤u≤0

∫ 0

u

(X̃(v) − Y ∗
u (v))dv. (19.15)

The arguments to prove stability when ρ < 1 are then similar to those
in the RI case: when t tends to ∞, 1

t

∫ 0
−t

X̃(v)dv tends to E[X̃(0)] a.s.

from the pointwise ergodic theorem. The function ϕt =
∫ 0

−t
Y ∗

−t(v))dv is
super-additive. We then use the sub-additive ergodic theorem to prove
that 1

tϕt tends to a constant K a.s. and the pointwise ergodic theorem
again to show that this constant is necessarily E[Ỹ f (0)].

The proof of the last property relies on the following two ingredients:
(a) for all y, with probability 1, there exists a positive random variable
ε(y) > 0 such that the functions

y → gt(y) =
1
t

∫ t

0
Y f
0,y(v)dv

are t-uniformly continuous; (b) let yo(t) be the initial condition that
minimizes

∫ t

0 Y f
0,y(v)dv; the liminf of the function yo(t) as t tends to ∞
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Fig. 19.11. Decomposition of the integral of X in a sum of trapezes.

is 0. From (b), we deduce that there exists a subsequence tn such that
yo(tn) converges to 0 a.s. It is easy to see that gtn

(yo(tn)) converges
to K as n tends to infinity. But gtn

(0) converges to EỸ f (0) due to the
ergodicity of the Harris chain Ỹ f (.). This together with the continuity
property (a) allow one to conclude that

K = lim
n→∞ gtn(yo(tn)) = lim

n→∞ gtn(0) = EỸ f (0) a.s.

19.4.6 Tail asymptotics in the RI case

Here, we take up the observation 19.4 and confirm it with the following
theoretical result.

Lemma 19.8 In the RI case, the queue distribution is heavier than a
Weibull distribution of shape parameter k = 0.5.

This unexpected result suggests that the buffer occupancy in split
TCP is not negligible. It also explains the quite important fluctuations
observed on end-to-end delays within this context (Fig. 19.11).

We give the proof of this result in [6]. Let us summarize here the main
steps of the proof. It relies on the lower bound of equation (19.10), and
it is based on the fact that the fluid input process and the fluid draining
process of this lower bound queue are jointly stationary and ergodic
and have renewal cycles (see [6]). We denote by T the length of such a
renewal cycle and we define

∆ =
∫ T

0
X̃(t) − Ỹ f (t)dt = Ix − Iy.

We first study the asymptotics for P(∆ > x) as x → ∞. We show that
this is lower-bounded by random variables with a Weibull distribution
with shape parameter 1/2. Hence Veraverbeke’s theorem ([13]) can be
used to show that Q is heavier than a Weibull distribution with shape
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parameter 1/2. We now provide an intuitive explanation of the result on
the tail of ∆. By looking at Ix, we observe that each trapeze area has a
triangular lower bound, so that

P

(
NT∑
0

Trapi > q

)
≥ P

(
NT∑
0

α
τ2i
2

> q

)
,

where NT denotes the number of losses in the cycle. All triangular areas
are i.i.d and heavy tailed: as τi are i.i.d exponentially distributed, each
summand has a tail distribution

P
(
α
τ2

2
> x

)
= P

(
τ >

√
2x
α

)
= e−µ

√
2x
α ,

which is Weibull with shape parameter k = 0.5. Thanks to the properties
of subexponential distributions, the result applies to the integral of X̃,
and then propagates to Q. It is worth noting that such a result is not
affected in practice by a limited congestion window (max congestion
window). Indeed, if we decompose the integral of X̃ as above, it is easy
to see that the heavy tailness yet arises due to the presence in the sum
of some terms like τ2i /2 linked to the periods when the window is not
clipped to the maximum value.

The communication literature contains many instances of heavy-
tailed queues. The most famous example is probably that of a FIFO
queue subject to a self-similar input process; it is proved in [23] that
the stationary buffer content is then heavy tailed; it is also well known
(see e.g. [12]) that such self-similar input processes arise in connection
with HTTP traffic, when represented as the superposition of a large
number of ON/OFF sources with Pareto on and/or off periods. In
this example, heavy-tailed queues arise as a corollary of long-range
dependence, which in turn is a consequence of the heavy tailedness of
file sizes and off periods. In contrast, the heavy tailedness of the proxy
contents in our split TCP model arises as a direct consequence of the
AIMD dynamics under the assumption of a RI loss process. Such rate
independent loss processes are quite natural in wireless or DSL lines,
for example. Note however that the heaviness of the tail is linked to the
loss model considered. In the RD case, arguments similar to those used
in the RI case let us conjecture that the queue distribution is light, as
suggested by observation 19.5.
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19.4.7 Phases duality and End delays

The structure of equations (19.5), (19.6) points out the duality between
phase 2 and 3: we can obtain one equation from the other by exchanging
the roles of X(t) and Y (t) (and their parameters). In phase 3, the
analogue of Q(t) in phase 2 is what we can call the antibuffer : A(t) =
B−Q(t), the amount of the proxy buffer space available at time t. Based
on this duality between the SF and FS scenarios, we can use the analysis
of the tail asymptotics of Q in the SF case to evaluate A(t) = B − Q(t)
in the dual FS case.

Let us now look at end-to-end delays. This is the sum of three terms:
the two local propagations delays and the proxy buffer waiting and
forwarding time. In the FS case and when B is large enough, the
processing delay of a packet arriving at time t at the proxy is well
approximated by the queue length at time t divided by the mean value
of the stationary service rate of TCP2, i.e.

D(t)≈R1

2
+

R2

2
+

Q(t)
E[Ỹ ]

=
R1

2
+

R2

2
+

B

E[Ỹ ]
− A(t)

E[Ỹ ]
. (19.16)

The fluctuations of D(t) are then determined by those of A(t). Duality
shows that the fluctuations of A(t) in this FS scenario are similar to
those of Q(t) in the SF case, namely are heavy tailed.

19.5 Conclusions

The first contribution of the paper is the set of equations (19.4)–(19.7)
which, to the best of our knowledge, provides the first mathematical
attempt for describing the dynamics of the split TCP system. Previous
models neglect the dependence between the two connections, by
assuming that the buffer at the intermediate node never empties nor
saturates ([15]), whilst we have shown that there exist two phases,
(ph. 2, 3) where the interaction between the TCP rates X and Y and
buffer occupancy Q cannot be ignored. These equations also allowed us
to show that the prediction of the expected throughput in steady state
as provided by the square-root formula for the slowest TCP connection
in isolation ([19], [27], [15], [26]) is not valid unless buffers are very
large. Finally, these equations allowed us to identify situations in which
the proxy buffer content has either heavy tails or important fluctuations
which imply in turn important fluctuations for end-to-end delays. We
also expect these equations to open a new analytical track for answering
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the following list of questions which remain open up to the writing of
the present paper.

(i) In the finite buffer backpressured case,

(a) Is the split TCP stationary rate increasing in B as suggested by
observation 19.2.

(b) What is the value of the stationary rate of the connection?

(ii) In the infinite buffer stable case,

(a) Is the stationary proxy buffer contents light tailed in the RD case?
(b) What is the distribution, or the mean value of the stationary buffer

content?
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