1. Элементы выборки X_1, \ldots, X_n имеют распределение

$$\mathsf{P}(X_1=0)=1-3\theta,\;\mathsf{P}(X_1=1)=\mathsf{P}(X_1=2)=\mathsf{P}(X_1=3)=\theta,\;$$
где $0<\theta<rac{1}{3}.$

- а) (1 балл) Найти ОММ θ^* для параметра θ по второму моменту.
- б) (2 балла) Проверить асимптотическую нормальность этой оценки.
- в) (2 балла) Построить асимптотический доверительный интервал для θ асимптотического уровня доверия 0,98 с помощью оценки θ^* .
- **2.** Элементы выборки X_1,\ldots,X_n имеют распределение с плотностью $f_{\theta}(y)=4\theta^4y^{-5}$ при $y\geqslant \theta.$
 - а) (2 балла) Найти ОМП $\widehat{\boldsymbol{\theta}}$ для параметра $\boldsymbol{\theta}$.
 - б) (1 балл) Проверить асимптотическую нормальность ОМП $\hat{\theta}$.
 - в) (3 балла) Вычислить смещение ОМП $\widehat{\theta}$ и исправить оценку, сделав несмещённой.
- **3.** Даны две независимые выборки: $X_1, \dots, X_n \in N(a_1, \sigma^2)$ и $Y_1, \dots, Y_m \in N(a_2, 2\sigma^2)$.

Пусть $S_{0,y}^2$ и $S_{0,y}^2$ — несмещённые выборочные дисперсии, построенные по этим выборкам.

- а) (1 балл) Для каких пар значений α и β статистика $\alpha S_{0,x}^2 + \beta S_{0,y}^2$ является несмещённой оценкой для σ^2 ?
- б) (4 балла) Среди всех таких несмещённых оценок найти наилучшую в среднеквадратичном.

ФИО сту,	Номер группы							
1a	1б	1в	2a	26	2в	3a	36	

1. Элементы выборки X_1, \ldots, X_n имеют распределение

$$\mathsf{P}(X_1=-1)=\mathsf{P}(X_1=2)=\theta, \; \mathsf{P}(X_1=1)=2\theta, \; \mathsf{P}(X_1=0)=1-4\theta, \; \mathrm{где} \; 0<\theta<\frac{1}{4}.$$

- а) (1 балл) Найти ОММ θ^* для параметра θ по третьему моменту.
- б) (2 балла) Проверить асимптотическую нормальность этой оценки.
- в) (2 балла) Построить асимптотический доверительный интервал для θ асимптотического уровня доверия 0,92 с помощью оценки θ^* .
- **2.** Элементы выборки $X_1,\,\dots,\,X_n$ имеют распределение с плотностью $f_{\theta}(y)=2\theta^2y^{-3}$ при $y\geqslant \theta$.
 - а) (2 балла) Найти ОМП $\widehat{\mathbf{\theta}}$ для параметра $\mathbf{\theta}$.
 - б) (1 балл) Проверить асимптотическую нормальность ОМП $\widehat{\boldsymbol{\theta}}$.
 - в) (3 балла) Вычислить смещение ОМП $\hat{\theta}$ и исправить оценку, сделав несмещённой.
- **3.** Даны две независимые выборки: $X_1, \dots, X_n \in N(a_1, \sigma^2)$ и $Y_1, \dots, Y_m \in N(a_2, 3\sigma^2)$.

Пусть $S_{0,y}^2$ и $S_{0,y}^2$ — несмещённые выборочные дисперсии, построенные по этим выборкам.

- а) (1 балл) Для каких пар значений α и β статистика $\alpha S_{0,x}^2 + \beta S_{0,y}^2$ является несмещённой оценкой для σ^2 ?
- б) (4 балла) Среди всех таких несмещённых оценок найти наилучшую в среднеквадратичном.

Номер группы
2B 3a 36
2

1. Элементы выборки X_1, \ldots, X_n имеют распределение

$$\mathsf{P}(X_1=-1)=2\theta, \; \mathsf{P}(X_1=2)=\mathsf{P}(X_1=1)=\theta, \; \mathsf{P}(X_1=0)=1-4\theta, \; \mathrm{где} \; 0<\theta<\frac{1}{4}.$$

- а) (1 балл) Найти ОММ θ^* для параметра θ по второму моменту.
- б) (2 балла) Проверить асимптотическую нормальность этой оценки.
- в) (2 балла) Построить асимптотический доверительный интервал для θ асимптотического уровня доверия 0,84 с помощью оценки θ^* .
- **2.** Элементы выборки X_1, \ldots, X_n имеют распределение с плотностью $f_{\theta}(y) = 3\theta^3 y^{-4}$ при $y \geqslant \theta$.
 - а) (2 балла) Найти ОМП $\widehat{\theta}$ для параметра θ .
 - б) (1 балл) Проверить асимптотическую нормальность ОМП $\hat{\theta}$.
 - в) (3 балла) Вычислить смещение ОМП $\hat{\theta}$ и исправить оценку, сделав несмещённой.
- **3.** Даны две независимые выборки: $X_1,\dots,X_n \in N(a_1,\,\sigma^2)$ и $Y_1,\dots,Y_m \in N(a_2,\,\mathbf{4}\sigma^2)$.

Пусть $S_{0,y}^2$ и $S_{0,y}^2$ — несмещённые выборочные дисперсии, построенные по этим выборкам.

- а) (1 балл) Для каких пар значений α и β статистика $\alpha S_{0,x}^2 + \beta S_{0,y}^2$ является несмещённой оценкой для σ^2 ?
- б) (4 балла) Среди всех таких несмещённых оценок найти наилучшую в среднеквадратичном.

ФИО студ	Номер группы							
1a	1б	1в	2a	2б	2в	3a	3б	

- **1.** Элементы выборки X_1, \ldots, X_n имеют распределение $\mathsf{P}(X_1=0)=1-5\theta, \mathsf{P}(X_1=1)=3\theta, \mathsf{P}(X_1=2)=\mathsf{P}(X_1=-1)=\theta,$ где $0<\theta<\frac{1}{5}.$
 - а) (1 балл) Найти ОММ θ^* для параметра θ по третьему моменту.
 - б) (2 балла) Проверить асимптотическую нормальность этой оценки.
 - в) (2 балла) Построить асимптотический доверительный интервал для θ асимптотического уровня доверия 0.8 с помощью оценки θ^* .
- **2.** Элементы выборки $X_1,\,\dots,\,X_n$ имеют распределение с плотностью $f_{\theta}(y)=5\theta^5y^{-6}$ при $y\geqslant \theta.$
 - а) (2 балла) Найти ОМП $\widehat{\theta}$ для параметра θ .
 - б) (1 балл) Проверить асимптотическую нормальность ОМП $\hat{\theta}$.
 - в) (3 балла) Вычислить смещение ОМП $\widehat{\theta}$ и исправить оценку, сделав несмещённой.
- **3.** Даны две независимые выборки: $X_1, \dots, X_n \in N(a_1, \sigma^2)$ и $Y_1, \dots, Y_m \in N(a_2, 5\sigma^2)$.

Пусть $S_{0,x}^2$ и $S_{0,y}^2$ — несмещённые выборочные дисперсии, построенные по этим выборкам.

- а) (1 балл) Для каких пар значений α и β статистика $\alpha S_{0,x}^2 + \beta S_{0,y}^2$ является несмещённой оценкой для σ^2 ?
- б) (4 балла) Среди всех таких несмещённых оценок найти наилучшую в среднеквадратичном.

	ФИО студента									
	1a	1б	1в	2a	2б	2в	3a	3б		
L										