- **1.** Пусть X_1, \ldots, X_n выборка объёма n из распределения с плотностью $f(y) = 3\theta^3 y^{-4}$ на интервале $[\theta, +\infty)$, где $\theta > 0$. Выяснить, как ведут себя при $n \to \infty$ случайные величины $F_n^*(3\theta) F_n^*(2\theta)$.
 - **2.** Пусть $X_1, ..., X_n$ выборка из распределения Пуассона с параметром λ .
 - а) Вычислить математическое ожидание случайной величины $5(\overline{X})^2 + S^2$.
 - б) Выяснить, как эта случайная величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n из распределения $\mathcal F$ и гипотезы $H_1 = \{\mathcal F = \mathrm{U}_{0,\,2}\}$ и $H_2 = \{\mathcal F = \mathrm{U}_{1,\,3}\}$. Критерий δ предписывает принимать гипотезу H_2 , если $X_{(1)} \geqslant 3/2$. Найти вероятности ошибок первого и второго рода этого критерия. Является ли критерий состоятельным?
- 4. Дана выборка объёма n=9 из нормального распределения $N_{a,\,16}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,\,1}(-2)$ для различения гипотез $H_1=\{a=1\}$ и $H_2=\{a=-1\}$. Какую гипотезу выбрал критерий при $\overline{X}=-1$?
- **5.** Для проверки симметричности монеты её подбросили n раз. Гипотеза симметричности принимается, если число выпадений герба заключено в границах $n/2 \pm \Delta$. Найти, каким должно быть Δ , чтобы данный критерий имел асимптотический размер $\varepsilon = 2\Phi_{0,1}(-3)$. Проверить симметричность монеты, если после $10\,000$ бросков герб выпал $5\,400$ раз.
 - **6.** Доказать теорему Гливенко Кантелли для выборки из распределения Бернулли $B_{0.25}$.

ФИО	ФИО								
1	2	3	4	5	6				

- **1.** Пусть X_1, \dots, X_n выборка из распределения Пуассона с параметром λ . Пусть ν_n число элементов выборки, попавших в отрезок [1, 3]. Выяснить, как ведут себя при $n \to \infty$ случайные величины $\frac{\nu_n}{n}$.
- **2.** Пусть X_1, \ldots, X_n выборка объёма n из распределения с плотностью $f(y) = 3y^{-4}$ на интервале $[1, +\infty)$.
 - а) Вычислить математическое ожидание случайной величины $3(\overline{X})^2 S^2$.
 - б) Выяснить, как эта случайная величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n и две простые гипотезы: $H_1 = \{X_i \text{ имеют показательное распределение с параметром 1}, <math>H_2 = \{X_i \text{ имеют распределение с плотностью } f(y) \text{ из задачи 2}\}.$

Критерий $\delta(X_1,\ldots,X_n)$ предписывает принимать гипотезу H_2 , если $2\leqslant X_{(n)}\leqslant 3$. В противном случае принимается H_1 . Найти вероятности ошибок первого и второго рода этого критерия.

- **4.** Дана выборка X_1, \ldots, X_n из показательного распределения с параметром α . Построить наиболее мощный критерий асимптотического размера ε для различения двух простых гипотез $H_1 = \{\alpha = 2\}$ и $H_2 = \{\alpha = 1\}$ Какую гипотезу выбрал критерий при $\overline{X} = 1$, n = 400, $\varepsilon = \Phi_{0,1}(-2)$?
- **5.** Основная гипотеза о правильности игральной кости принимается, если после n подбрасываний кости число выпавших шестерок отличается от n/6 не более, чем на $\sqrt{5n}/2$. Иначе принимается альтернатива: кость неправильная, и вероятность выпадения шестерки не равна 1/6. Найти пределы размера и мощности этого критерия при $n \to \infty$.
- **6.** Пусть X_1, \ldots, X_n —выборка из распределения Пуассона с параметром $\lambda = 1$. Проверить независимость статистик $X_1 + X_2$ и $X_{(1)}$.

	ФИО							Номер группы
L								
	1	2	3	4	5	6		
							-	

- **1.** Пусть X_1, \ldots, X_n выборка объёма n из распределения с плотностью $f(y) = 4y^3\theta^{-4}$ на интервале $[0, \theta]$, где $\theta > 0$. Выяснить, как ведут себя при $n \to \infty$ случайные величины $F_n^*(\theta/2) F_n^*(\theta/3)$.
 - **2.** Пусть X_1, \ldots, X_n выборка из биномиального распределения с параметрами 2 и p.
 - а) Вычислить математическое ожидание случайной величины $5\overline{X^2} + 3(\overline{X})^2$.
 - б) Выяснить, как эта случайная величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n из распределения $\mathcal F$ и гипотезы $H_1 = \{\mathcal F = \mathrm{U}_{1,\,3}\}$ и $H_2 = \{\mathcal F = \mathrm{U}_{0,\,2}\}$. Критерий δ предписывает принимать гипотезу H_2 , если $X_{(1)} \leqslant 3/2$. Найти вероятности ошибок первого и второго рода этого критерия. Является ли критерий состоятельным?
- 4. Дана выборка объёма n=16 из нормального распределения $N_{a,\,9}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,\,1}(-3)$ для различения гипотез $H_1=\{a=2\}$ и $H_2=\{a=0\}$. Какую гипотезу выбрал критерий при $\overline{X}=0$?
- 5. Для проверки симметричности игральной кости её подбросили n раз. Гипотеза симметричности принимается, если количество выпадений единички заключено в границах $n/6 \pm \Delta$. Найти, каким должно быть Δ , чтобы данный критерий имел асимптотический размер $\varepsilon = 2\Phi_{0,1}(-2)$. Проверить симметричность кости, если после $3\,600$ бросков единица выпала 540 раз.
- **6.** Дана выборка из показательного распределения с параметром 1. Выяснить, куда слабо сходится последовательность $\sqrt{n} |F_n^*(3) F(3)|$ при $n \to \infty$.

	ФИО						Номер группы
	1	2	3	4	5	6	
L							

- **1.** Пусть X_1,\dots,X_n выборка из биномиального распределения с параметрами 3 и p. Пусть ν_n число элементов выборки, попавших в отрезок $[1,\ 2]$. Выяснить, как ведут себя при $n\to\infty$ случайные величины $\frac{\nu_n}{n}$.
- **2.** Пусть X_1, \ldots, X_n выборка объёма n из распределения с плотностью $f(y) = y^3/4$ на интервале [0, 2].
 - а) Вычислить математическое ожидание случайной величины $5\overline{X^2} + (\overline{X})^2$.
 - б) Выяснить, как эта случайная величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n и две простые гипотезы: $H_1 = \{X_i \text{ имеют распределение с плотностью } f(y)$ из задачи **2** $\}$, $H_2 = \{X_i \text{ имеют равномерное распределение на отрезке } [0, 2] <math>\}$. Критерий $\delta(X_1, \ldots, X_n)$ предписывает принимать гипотезу H_1 , если $1/2 \leqslant X_{(1)} \leqslant 3/2$. В противном случае принимается H_2 . Найти вероятности ошибок первого и второго рода этого критерия.
- 4. Дана выборка X_1, \dots, X_n из показательного распределения с параметром β . Построить наиболее мощный критерий асимптотического размера ε для различения двух простых гипотез $H_1 = \{\beta = 6\}$ и $H_2 = \{\beta = 3\}$. Какую гипотезу выбрал критерий при $\overline{X} = 4$, n = 900, $\varepsilon = \Phi_{0,1}(-3)$?
- **5.** Проверяется основная гипотеза о том, что бутерброд падает маслом вниз с вероятностью 3/4. Основная гипотеза отвергается, если после n экспериментов число упавших маслом вниз бутербродов отличается от 3n/4 более, чем на $3\sqrt{3n}/4$. Найти пределы размера и мощности этого критерия при $n \to \infty$.
- **6.** Пусть X_1, \ldots, X_n выборка из показательного распределения с параметром $\alpha = 1$. Проверить независимость статистик $X_{(1)}$ и $X_{(2)}$.

	ФИО							Номер группы
L								
	1	2	3	4	5	6		
							•	
L								

- **1.** Пусть X_1, \ldots, X_n выборка объёма n из распределения с плотностью $f(y) = 5\theta^5 y^{-6}$ на интервале $[\theta, +\infty)$, где $\theta > 0$. Выяснить, как ведут себя при $n \to \infty$ случайные величины $F_n^*(4\theta) F_n^*(3\theta)$.
 - **2.** Пусть X_1, \ldots, X_n выборка из показательного распределения с параметром α .
 - а) Вычислить математическое ожидание случайной величины $2(\overline{X})^2 5S^2$.
 - б) Выяснить, как эта случайная величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n из распределения $\mathcal F$ и гипотезы $H_1 = \{\mathcal F = \mathrm{U}_{1,\,3}\}$ и $H_2 = \{\mathcal F = \mathrm{U}_{2,\,5}\}$. Критерий δ предписывает принимать гипотезу H_2 , если $X_{(1)} \geqslant 2$. Найти вероятности ошибок первого и второго рода этого критерия. Является ли критерий состоятельным?
- 4. Дана выборка объёма n=9 из нормального распределения $N_{a,4}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,1}(-2,5)$ для различения гипотез $H_1=\{a=2\}$ и $H_2=\{a=1\}$. Какую гипотезу выбрал критерий при $\overline{X}=1$?
- **5.** Для проверки гипотезы о симметричности тетраэдра его подбросили n раз. Гипотеза симметричности принимается, если число выпадений помеченной грани заключено в границах $n/4 \pm \Delta$. Найти, каким должно быть Δ , чтобы данный критерий имел асимптотический размер $\varepsilon = 2\Phi_{0,1}(-2)$. Проверить симметричность тетраэдра, если после 1 600 бросков помеченная грань выпала 430 раз.
- **6.** Доказать асимптотическую нормальность несмещённой выборочной дисперсии, построенной по выборке из распределения Пуассона.

ФИО							Номер группы
1	2	3	4	5	6		
						-	

- **1.** Пусть X_1, \ldots, X_n выборка из распределения Пуассона с параметром λ . Пусть ν_n число элементов выборки, попавших в отрезок [2, 3]. Выяснить, как ведут себя при $n \to \infty$ случайные величины $\frac{\nu_n}{n}$.
- **2.** Пусть X_1, \ldots, X_n выборка объёма n из распределения с плотностью $f(y) = 5y^{-6}$ на интервале $[1, +\infty)$.
 - а) Вычислить математическое ожидание случайной величины $(\overline{X})^2 3S^2$.
 - б) Выяснить, как эта случайная величина себя ведёт при $n \to \infty$.
- 3. Дана выборка X_1, \ldots, X_n из распределения $\mathcal F$ и гипотезы $H_1 = \{\mathcal F = \mathrm{U}_{1,4}\}$ и $H_2 = \{\mathcal F$ имеет распределение с плотностью f(y) из задачи 2 $\}$. Критерий δ предписывает принимать гипотезу H_1 , если $2 < X_{(1)} < 3$. Найти вероятности ошибок первого и второго рода этого критерия. Является ли критерий состоятельным?
- **4.** Дана выборка X_1, \ldots, X_n из показательного распределения с параметром γ . Построить наиболее мощный критерий асимптотического размера ε для различения двух простых гипотез $H_1 = \{\gamma = 4\}$ и $H_2 = \{\gamma = 2\}$. Какую гипотезу выбрал критерий при $\overline{X} = 1$, n = 1600, $\varepsilon = \Phi_{0,1}(-2,5)$?
- **5.** Проверяется основная гипотеза о том, что вероятность выпуска бракованной лампочки равна 1/3. Эта гипотеза принимается, если в партии из n лампочек число бракованных лампочек отличается от n/3 не более, чем на $\sqrt{2n}$. Найти пределы размера и мощности этого критерия при $n \to \infty$.
- **6.** Дана выборка из показательного распределения с параметром α . Найти число $c=c(\alpha)$ такое, что последовательность $\sqrt{n}\left(X_{([n/2])}-c\right)$ слабо сходится к некоторому нормальному распределению. Найти параметры этого распределения.

ONO	ФИО					Номер группы
1 2	1	3	4	5	6	
1 2			4		0	