- **1.** Пусть X_1, \ldots, X_n выборка объёма n из распределения с плотностью $f(y) = 3\theta^3 y^{-4}$ на интервале $[\theta, +\infty)$, где $\theta > 0$.
 - а) Вычислить математическое ожидание и дисперсию случайной величины $F_n^*(3\theta) F_n^*(2\theta)$.
 - б) Найти при n=5 распределение этой случайной величины.
 - **2.** Пусть $X_1, ..., X_n$ выборка из распределения Пуассона с параметром λ .
 - а) Вычислить математическое ожидание случайной величины $5(\overline{X})^2 + S^2$.
 - б) Выяснить, как эта величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n из распределения \mathcal{F} и гипотезы $H_1 = \{\mathcal{F} = \mathrm{U}_{0,\,2}\}$ и $H_2 = \{\mathcal{F} = \mathrm{U}_{1,\,3}\}$. Критерий δ предписывает принимать гипотезу H_2 , если $X_{(1)} \geqslant 1$. Найти вероятности ошибок первого и второго рода этого критерия. Является ли критерий состоятельным?
- **4.** Дана выборка объёма n=9 из нормального распределения $N_{a,\,16}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,\,1}(-2)$ для различения гипотез $H_1=\{a=1\}$ и $H_2=\{a=-1\}$. Какую гипотезу выбрал критерий при $\overline{X}=-1$?
- 5. Для проверки симметричности монеты её подбросили n раз. Гипотеза симметричности принимается, если число выпадений герба заключено в границах $n/2 \pm \Delta$. Найти, каким должно быть Δ , чтобы данный критерий имел асимптотический размер $\varepsilon = 2\Phi_{0,1}(-3)$. Проверить симметричность монеты, если после $10\,000$ бросков герб выпал $5\,400$ раз.
- **6.** Дана выборка из показательного распределения с параметром 1. Выяснить, куда слабо сходится последовательность $\sqrt{n} |F_n^*(3) F(3)|$ при $n \to \infty$.

-	ФИО										Номер группы
	1	2	;	ę	3	4	4	5	6		
-											

- **1.** Пусть X_1, \ldots, X_n выборка объёма n из распределения с плотностью $f(y) = 4y^3\theta^{-4}$ на интервале $[0, \theta]$, где $\theta > 0$.
 - а) Вычислить математическое ожидание и дисперсию случайной величины $F_n^*(\theta/2) F_n^*(\theta/3)$.
 - б) Найти при n=6 распределение этой случайной величины.
 - **2.** Пусть X_1, \ldots, X_n выборка из биномиального распределения с параметрами 2 и p.
 - а) Вычислить математическое ожидание случайной величины $5\overline{X^2} + 3(\overline{X})^2$.
 - б) Выяснить, как эта величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n из распределения \mathcal{F} и гипотезы $H_1 = \{\mathcal{F} = \mathrm{U}_{1,3}\}$ и $H_2 = \{\mathcal{F} = \mathrm{U}_{0,2}\}$. Критерий δ предписывает принимать гипотезу H_2 , если $X_{(1)} \leqslant 1$. Найти вероятности ошибок первого и второго рода этого критерия. Является ли критерий состоятельным?
- 4. Дана выборка объёма n=16 из нормального распределения $N_{a,\,9}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,\,1}(-3)$ для различения гипотез $H_1=\{a=2\}$ и $H_2=\{a=0\}$. Какую гипотезу выбрал критерий при $\overline{X}=0$?
- **5.** Для проверки симметричности игральной кости её подбросили n раз. Гипотеза симметричности принимается, если количество выпадений единички заключено в границах $n/6 \pm \Delta$. Найти, каким должно быть Δ , чтобы данный критерий имел асимптотический размер $\varepsilon = 2\Phi_{0,1}(-2)$. Проверить симметричность кости, если после $3\,600$ бросков единица выпала 540 раз.
- **6.** Найти предел в смысле слабой сходимости последовательности $\sqrt{n}\sup_y |F_n^*(y) F(y)|$ для выборки из распределения Бернулли $B_{0,25}$.

Φ	ИО							Номер группы
	1	2	3	4	5	6		
_								

- **1.** Пусть X_1, \ldots, X_n выборка объёма n из распределения с плотностью $f(y) = 5\theta^5 y^{-6}$ на интервале $[\theta, +\infty)$, где $\theta > 0$.
 - а) Вычислить математическое ожидание и дисперсию случайной величины $F_n^*(4\theta) F_n^*(3\theta)$.
 - б) Найти при n=4 распределение этой случайной величины.
 - **2.** Пусть X_1, \dots, X_n выборка из показательного распределения с параметром α .
 - а) Вычислить математическое ожидание случайной величины $2(\overline{X})^2 5S^2$.
 - б) Выяснить, как эта величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n из распределения \mathcal{F} и гипотезы $H_1 = \{\mathcal{F} = \mathrm{U}_{1,3}\}$ и $H_2 = \{\mathcal{F} = \mathrm{U}_{2,5}\}$. Критерий δ предписывает принимать гипотезу H_2 , если $X_{(1)} \geqslant 2$. Найти вероятности ошибок первого и второго рода этого критерия. Является ли критерий состоятельным?
- 4. Дана выборка объёма n=9 из нормального распределения $N_{a,4}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,1}(-2,5)$ для различения гипотез $H_1=\{a=2\}$ и $H_2=\{a=1\}$. Какую гипотезу выбрал критерий при $\overline{X}=1$?
- **5.** Для проверки гипотезы о симметричности тетраэдра его подбросили n раз. Гипотеза симметричности принимается, если число выпадений помеченной грани заключено в границах $n/4 \pm \Delta$. Найти, каким должно быть Δ , чтобы данный критерий имел асимптотический размер $\varepsilon = 2\Phi_{0,1}(-2)$. Проверить симметричность тетраэдра, если после 1 600 бросков помеченная грань выпала 430 раз.
- **6.** Доказать асимптотическую нормальность несмещённой выборочной дисперсии, построенной по выборке из распределения Пуассона.

-	ФИО							Номер группы
L								
	1	2	3	4	5	6		
'							-	
L								

- 1. Пусть X_1, \dots, X_n выборка объёма n из распределения с плотностью $f(y) = 5y^4\theta^{-5}$ на интервале $[0, \theta]$, где $\theta > 0$.
 - а) Вычислить математическое ожидание и дисперсию случайной величины $F_n^*(2\theta/3) F_n^*(\theta/3)$.
 - б) Найти при n=8 распределение этой случайной величины.
 - **2.** Пусть X_1, \dots, X_n выборка из равномерного распределения <u>на</u> отрезке [-a, a].
 - а) Вычислить математическое ожидание случайной величины $3\overline{X^2} 7(\overline{X})^2$.
 - б) Выяснить, как эта величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n из распределения $\mathcal F$ и гипотезы $H_1 = \{\mathcal F = \mathrm{U}_{2,\,4}\}$ и $H_2 = \{\mathcal F = \mathrm{U}_{1,\,3}\}$. Критерий δ предписывает принимать гипотезу H_2 , если $X_{(1)} \leqslant 2$. Найти вероятности ошибок первого и второго рода этого критерия. Является ли критерий состоятельным?
- 4. Дана выборка объёма n=4 из нормального распределения $N_{a,\,9}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,\,1}(-2)$ для различения гипотез $H_1=\{a=1\}$ и $H_2=\{a=-1\}$. Какую гипотезу выбрал критерий при $\overline{X}=-1$?
- **5.** Проверяется гипотеза о том, что бутерброд падает маслом вниз с вероятностью 0,75. Эта гипотеза принимается, если после n экспериментов число упавших маслом вниз бутербродов заключено в границах $3n/4 \pm \Delta$. Найти, каким должно быть Δ , чтобы данный критерий имел асимптотический размер $\varepsilon = 2\Phi_{0,1}(-2,5)$. Проверить гипотезу, если из $10\,000$ бутербродов маслом вниз упали $7\,600$ штук.
- **6.** Дана выборка из распределения Пуассона с параметром 1. Выяснить, куда слабо сходится последовательность $\sqrt{n} |F_n^*(2) F(2)|$ при $n \to \infty$.

					Номер	группы
2	3	4	5	6		
	2	2 3	2 3 4	2 3 4 5	2 3 4 5 6	2 3 4 5 6

- 1. Пусть X_1, \dots, X_n выборка объёма n из распределения с плотностью $f(y) = 4\theta^4 y^{-5}$ на интервале $[\theta, +\infty)$, где $\theta > 0$.
 - а) Вычислить математическое ожидание и дисперсию случайной величины $F_n^*(5\theta) F_n^*(2\theta)$.
 - б) Найти при n=7 распределение этой случайной величины.
 - **2.** Пусть X_1, \ldots, X_n выборка из биномиального распределения с параметрами 3 и p.
 - а) Вычислить математическое ожидание случайной величины $7(\overline{X})^2 + S^2$.
 - б) Выяснить, как эта величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n из распределения \mathcal{F} и гипотезы $H_1 = \{\mathcal{F} = \mathrm{U}_{-1,1}\}$ и $H_2 = \{\mathcal{F} = \mathrm{U}_{0,3}\}$. Критерий δ предписывает принимать гипотезу H_2 , если $X_{(1)} \geqslant 0$. Найти вероятности ошибок первого и второго рода этого критерия. Является ли критерий состоятельным?
- **4.** Дана выборка объёма n=25 из нормального распределения $N_{a,36}$. Построить наиболее мощный критерий размера $\varepsilon = \Phi_{0,1}(-2)$ для различения гипотез $H_1 = \{a=3\}$ и $H_2 = \{a=1\}$. Какую гипотезу выбрал критерий при $\overline{X}=1$?
- 5. Проверяется гипотеза о том, что стрелок попадает по мишени с вероятностью 0,9. Гипотеза принимается, если число попаданий после n выстрелов заключено в границах $0.9n \pm \Delta$. Найти, каким должно быть Δ , чтобы данный критерий имел асимптотический размер $\varepsilon = 2\Phi_{0,1}(-3)$. Проверить гипотезу, если после 400 выстрелов стрелок попал 340 раз.
- **6.** Найти предел в смысле слабой сходимости последовательности $\sqrt{n}\sup_y |F_n^*(y) F(y)|$ для выборки из распределения Бернулли $B_{0,5}$.

ФИО						Номер группы
1	2	3	4	5	6	

- **1.** Пусть X_1, \ldots, X_n выборка объёма n из распределения с плотностью $f(y) = 6y^5\theta^{-6}$ на интервале $[0, \theta]$, где $\theta > 0$.
 - а) Вычислить математическое ожидание и дисперсию случайной величины $F_n^*(\theta/2) F_n^*(\theta/4)$.
 - б) Найти при n=10 распределение этой случайной величины.
 - **2.** Пусть X_1, \ldots, X_n выборка из равномерного распределения на отрезке [1, b].
 - а) Вычислить математическое ожидание случайной величины $\overline{X^2} + 5(\overline{X})^2$.
 - б) Выяснить, как эта величина себя ведёт при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n из распределения \mathcal{F} и гипотезы $H_1 = \{\mathcal{F} = \mathrm{U}_{2,4}\}$ и $H_2 = \{\mathcal{F} = \mathrm{U}_{0,3}\}$. Критерий δ предписывает принимать гипотезу H_2 , если $X_{(1)} \leqslant 2$. Найти вероятности ошибок первого и второго рода этого критерия. Является ли критерий состоятельным?
- **4.** Дана выборка объёма n=36 из нормального распределения $N_{a,\,25}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,\,1}(-2)$ для различения гипотез $H_1=\{a=2\}$ и $H_2=\{a=1\}$. Какую гипотезу выбрал критерий при $\overline{X}=1$?
- 5. Для проверки гипотезы о том, что вероятность обнаружить приз-брелок в пачке чипсов «Lays» равна 0,2, куплены n пачек чипсов. Гипотеза принимается, если количество обнаруженных призов заключено в границах $0,2n\pm\Delta$. Найти, каким должно быть Δ , чтобы данный критерий имел асимптотический размер $\varepsilon=2\Phi_{0,1}(-3)$. Проверить гипотезу, если в 10 000 проверенных пачек чипсов обнаружены 1 600 призов.
- **6.** Доказать асимптотическую нормальность несмещённой выборочной дисперсии, построенной по выборке из показательного распределения.

ФИ	O							I	Номер группы
	1	2	3	4	5	6			

- **1.** Пусть X_1, \ldots, X_n выборка из показательного распределения с параметром α . Вычислить математическое ожидание случайной величины $(\overline{X})^2 \frac{S_0^2}{n}$ и выяснить, как эта величина себя ведёт при $n \to \infty$.
- **2.** Пусть X_1, \ldots, X_n выборка из распределения Пуассона с параметром λ . Обозначим через ν_n число элементов выборки, попавших в отрезок [1; 2]. Найти математическое ожидание и дисперсию случайной величины $p^* = \nu_n/n$. Выяснить, как себя ведет p^* при $n \to \infty$.
- 3. Дана выборка X_1, \ldots, X_n и две простые гипотезы: $H_1 = \{X_i$ имеют показательное распределение с параметром $1\}$, $H_2 = \{X_i$ имеют распределение с плотностью $f_2(y)\}$, где $f_2(y) = 3/y^4$, если $y \geqslant 1$, иначе $f_2(y) = 0$. Критерий $\delta(X_1, \ldots, X_n)$ предписывает принимать гипотезу H_2 , если $1 \leqslant X_{(n)} \leqslant 3$. В противном случае принимается H_1 . Найти вероятности ошибок первого и второго рода этого критерия. Здесь $X_{(n)} = \max\{X_1, \ldots, X_n\}$.
- **4.** Основная гипотеза о правильности игральной кости принимается, если после n подбрасываний кости число выпавших шестерок отличается от n/6 не более, чем на $\sqrt{5n}/2$. Иначе принимается альтернатива: кость неправильная, и вероятность выпадения шестерки не равна 1/6. Найти пределы размера и мощности этого критерия при $n \to \infty$.
- **5.** Дана выборка объёма n=16 из нормального распределения $N_{a,\,9}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,\,1}(-3)$ для различения гипотез $H_1=\{a=2\}$ и $H_2=\{a=0\}$. Какую гипотезу выбрал критерий при $\overline{X}=0$?
- **6.** Дана выборка из показательного распределения с параметром 1. Выяснить, куда слабо сходится последовательность $\sqrt{n} |F_n^*(3) F(3)|$ при $n \to \infty$.

Фамили	я студ	цента	a										Номе	р группы
1		2		3	4	1	5	6						
									_					

- **1.** Дана выборка X_1, \ldots, X_n из нормального распределения со средним a и дисперсией σ^2 . Вычислить математическое ожидание случайной величины $(\overline{X})^2 \frac{S_0^2}{n}$ и выяснить, как эта величина себя ведёт при $n \to \infty$.
- **2.** Пусть X_1, \ldots, X_n выборка из биномиального распределения с параметрами 5 и p. Обозначим через ν_n число элементов выборки, попавших в отрезок [1,5; 3]. Найти математическое ожидание и дисперсию случайной величины $\theta^* = \nu_n/n$. Выяснить, как себя ведет θ^* при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n и две простые гипотезы: $H_1 = \{X_i$ имеют распределение с плотностью $f_1(y) \}$, где $f_1(y) = {}^{4y^3}/_{3^4}$, если $0 \leqslant y \leqslant 3$, иначе $f_1(y) = 0$, и $H_2 = \{X_i$ имеют равномерное распределение на отрезке $[0, 4] \}$. Критерий $\delta(X_1, \ldots, X_n)$ предписывает принимать гипотезу H_1 , если $2 \leqslant X_{(1)} \leqslant 3$. В противном случае принимается H_2 . Найти вероятности ошибок первого и второго рода этого критерия. Здесь $X_{(1)} = \min\{X_1, \ldots, X_n\}$.
- **4.** Основная гипотеза о правильности монеты принимается, если после n подбрасываний монеты число выпавших гербов отличается от n/2 не более, чем на $3\sqrt{n}/2$. Найти пределы размера и мощности этого критерия при $n \to \infty$.
- 5. Дана выборка объёма n=9 из нормального распределения $N_{a,\,16}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,\,1}(-2)$ для различения гипотез $H_1=\{a=1\}$ и $H_2=\{a=-1\}$. Какую гипотезу выбрал критерий при $\overline{X}=-1$?
- **6.** Найти предел в смысле слабой сходимости последовательности $\sqrt{n}\sup_y |F_n^*(y) F(y)|$ для выборки из распределения Бернулли $B_{0,25}$.

Φ.	амили	я сту	дент	a											Номер груп	ПЫ
	1		2		9	3	4	1	5	6						

- **1.** Пусть X_1, \dots, X_n выборка объема n из распределения Пуассона с параметром λ . Вычислить математическое ожидание случайной величины $(\overline{X})^2 \frac{S^2}{n-1}$ и выяснить, как эта величина себя ведёт при $n \to \infty$.
- **2.** Пусть X_1, \ldots, X_n выборка из биномиального распределения с параметрами 3 и p. Обозначим через ν_n число элементов выборки, попавших в отрезок [1, 3]. Найти математическое ожидание и дисперсию случайной величины $a^* = \nu_n/n$. Выяснить, как себя ведет a^* при $n \to \infty$.
- 3. Дана выборка X_1, \ldots, X_n и две простые гипотезы: $H_1 = \{X_i$ имеют равномерное распределение на отрезке $[1, 5]\}$, $H_2 = \{X_i$ имеют распределение с плотностью $f_2(y)\}$, где $f_2(y) = 2e^2 \cdot e^{-2y}$, если $y \geqslant 1$, иначе $f_2(y) = 0$. Критерий $\delta(X_1, \ldots, X_n)$ предписывает принимать гипотезу H_1 , если $3 \leqslant X_{(n)} \leqslant 5$. В противном случае принимается H_2 . Найти вероятности ошибок первого и второго рода этого критерия. Здесь $X_{(n)} = \max\{X_1, \ldots, X_n\}$.
- **4.** Проверяется основная гипотеза о том, что бутерброд падает маслом вниз с вероятностью 3/4. Основная гипотеза отвергается, если после n экспериментов число упавших маслом вниз бутербродов отличается от 3n/4 более, чем на $3\sqrt{3n}/4$. Найти пределы размера и мощности этого критерия при $n \to \infty$.
- **5.** Дана выборка объёма n=9 из нормального распределения $N_{a,4}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,1}(-2,5)$ для различения гипотез $H_1=\{a=2\}$ и $H_2=\{a=1\}$. Какую гипотезу выбрал критерий при $\overline{X}=1$?
- **6.** Доказать асимптотическую нормальность несмещённой выборочной дисперсии, построенной по выборке из распределения Пуассона.

Фамили	я студен	та									Номер группы
1	2		3	4	1	5	6				
								-			

- **1.** Дана выборка X_1, \ldots, X_n из нормального распределения со средним a и дисперсией σ^2 . Вычислить математическое ожидание случайной величины $(\overline{X})^2 \frac{S_0^2}{n}$ и выяснить, как эта величина себя ведёт при $n \to \infty$.
- **2.** Пусть X_1, \ldots, X_n выборка из распределения Пуассона с параметром λ . Обозначим через ν_n число элементов выборки, попавших в отрезок [1, 2]. Найти математическое ожидание и дисперсию случайной величины $p^* = \nu_n/n$. Выяснить, как себя ведет p^* при $n \to \infty$.
- **3.** Дана выборка X_1, \ldots, X_n и две простые гипотезы: $H_1 = \{X_i \text{ имеют распределение с плотностью } f_1(y)\}$, где $f_1(y) = 3y^2/4^3$, если $0 \le y \le 4$, иначе $f_1(y) = 0$, и $H_2 = \{X_i \text{ имеют показательное распределение с параметром 2}. Критерий <math>\delta(X_1, \ldots, X_n)$ предписывает принимать гипотезу H_2 , если $0 \le X_{(1)} \le 2$. В противном случае принимается H_1 . Найти вероятности ошибок первого и второго рода этого критерия. Здесь $X_{(1)} = \min\{X_1, \ldots, X_n\}$.
- **4.** Проверяется основная гипотеза о том, что вероятность выпуска бракованной лампочки равна 1/3. Эта гипотеза принимается, если в партии из n лампочек число бракованных лампочек отличается от n/3 не более, чем на $\sqrt{2n}$. Найти пределы размера и мощности этого критерия при $n \to \infty$.
- 5. Дана выборка объёма n=4 из нормального распределения $N_{a,\,9}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,\,1}(-2)$ для различения гипотез $H_1=\{a=1\}$ и $H_2=\{a=-1\}$. Какую гипотезу выбрал критерий при $\overline{X}=-1$?
- **6.** Дана выборка из распределения Пуассона с параметром 1. Выяснить, куда слабо сходится последовательность $\sqrt{n} |F_n^*(2) F(2)|$ при $n \to \infty$.

Фа	мили	я сту	дент	a										Номер группы
	1		2		:	3	4	1	5	6				

- 1. Пусть X_1, \ldots, X_n выборка объема n из равномерного распределения на отрезке $[0, \theta]$, где $\theta > 0$. Вычислить математическое ожидание случайной величины $(\overline{X})^2 \frac{S^2}{n-1}$ и выяснить, как эта величина себя ведёт при $n \to \infty$.
- **2.** Пусть X_1, \ldots, X_n выборка из распределения Пуассона с параметром λ . Обозначим через ν_n число элементов выборки, попавших в отрезок [4, 5]. Найти математическое ожидание и дисперсию случайной величины $p^* = \nu_n/n$. Выяснить, как себя ведет p^* при $n \to \infty$.
- 3. Дана выборка X_1, \ldots, X_n и две простые гипотезы: $H_1 = \{X_i$ имеют равномерное распределение на отрезке $[0, 4]\}$, $H_2 = \{X_i$ имеют распределение с плотностью $f_2(y)\}$, где $f_2(y) = 2/y^3$, если $y \geqslant 1$, иначе $f_2(y) = 0$. Критерий $\delta(X_1, \ldots, X_n)$ предписывает принимать гипотезу H_2 , если $2 \leqslant X_{(n)} \leqslant 4$. В противном случае принимается H_1 . Найти вероятности ошибок первого и второго рода этого критерия. Здесь $X_{(n)} = \max\{X_1, \ldots, X_n\}$.
- **4.** Проверяется основная гипотеза о том, что стрелок попадает по мишени с вероятностью 9/10. Основная гипотеза принимается, если после n выстрелов число попаданий отличается от 9n/10 не более, чем на $9\sqrt{n}/10$. Найти пределы размера и мощности этого критерия при $n \to \infty$.
- 5. Дана выборка объёма n=25 из нормального распределения $N_{a,\,36}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,\,1}(-2)$ для различения гипотез $H_1=\{a=3\}$ и $H_2=\{a=1\}$. Какую гипотезу выбрал критерий при $\overline{X}=1$?
- **6.** Найти предел в смысле слабой сходимости последовательности $\sqrt{n}\sup_y |F_n^*(y) F(y)|$ для выборки из распределения Бернулли $B_{0,5}$.

Фамили	я сту	дент	a										Номер гру	ппы
1		2		3	4	1	5	6						
									_					

- **1.** Дана выборка X_1, \ldots, X_n из нормального распределения со средним a и дисперсией σ^2 . Вычислить математическое ожидание случайной величины $(\overline{X})^2 \frac{S_0^2}{n}$ и выяснить, как эта величина себя ведёт при $n \to \infty$.
- **2.** Пусть X_1, \ldots, X_n выборка из биномиального распределения с параметрами 4 и p. Обозначим через ν_n число элементов выборки, попавших в отрезок [1, 3]. Найти математическое ожидание и дисперсию случайной величины $b^* = \nu_n/n$. Выяснить, как себя ведет b^* при $n \to \infty$.
- 3. Дана выборка X_1, \ldots, X_n и две простые гипотезы: $H_1 = \{X_i \text{ имеют показательное распределение с параметром } 3\}$, $H_2 = \{X_i \text{ имеют распределение с плотностью } f_2(y)\}$, где $f_2(y) = \frac{2y}{25}$, если $0 \le y \le 5$, иначе $f_2(y) = 0$. Критерий $\delta(X_1, \ldots, X_n)$ предписывает принимать гипотезу H_2 , если $3 \le X_{(1)} \le 5$. В противном случае принимается H_1 . Найти вероятности ошибок первого и второго рода этого критерия. Здесь $X_{(1)} = \min\{X_1, \ldots, X_n\}$.
- **4.** Проверяется основная гипотеза о том, что 40% взрослого населения составляют пенсионеры, проверяется по выборке объема n. Эта гипотеза принимается, если доля пенсионеров в выборке отличается от 4n/10 не более, чем на $3\sqrt{6n}/5$. Найти пределы размера и мощности этого критерия при $n \to \infty$.
- 5. Дана выборка объёма n=36 из нормального распределения $N_{a,\,25}$. Построить наиболее мощный критерий размера $\varepsilon=\Phi_{0,\,1}(-2)$ для различения гипотез $H_1=\{a=2\}$ и $H_2=\{a=1\}$. Какую гипотезу выбрал критерий при $\overline{X}=1$?
- **6.** Доказать асимптотическую нормальность несмещённой выборочной дисперсии, построенной по выборке из показательного распределения.

Фамил	ия студ	ента	ı											Номер гру	ппы
1		2		9	3	4	1	5	6						