On Strong Law of Large Numbers for L-Statistics with Dependent Data

Evgeny BAKLANOV

Novosibirsk State University, Novosibirsk, Russia e-mail: baklanov@mmf.nsu.ru

The goal of the present note is to show that SLLN holds for L-statistics when data are stationary and ergodic sequences and also when data are stationary and ϕ -mixing sequences.

Let X_1, X_2, \ldots be a strictly stationary and ergodic sequence of random variables with a common distribution function F. We consider the L-statistics of the form

$$L_n = \sum_{i=1}^n c_{ni} h(X_{n:i}),$$

where $X_{n:1} \leq \ldots \leq X_{n:n}$ are the order statistics based on a sample $\{X_i; i \leq n\}$, h is a measurable function, c_{ni} , i = 1, ..., n, are known constants.

Let us consider a sequence of functions $c_n(t) = nc_{ni}$, $t \in ((i-1)/n, i/n]$, i = 1, ..., n, $c_n(0) = nc_{n1}$. Define the parameter $\mu_n = \int_0^1 c_n(t)H(t) dt$, where $H(t) = h(F^{-1}(t))$ and F^{-1} is the quantile function corresponding to the distribution function F.

Theorem 1. If any of the following three conditions hold:

(i) *H* is continuous and $\sup_{n\geq 1}\sum_{i=1}^{n} |c_{ni}| < \infty$; (ii) $\mathbf{E}|h(X_1)| < \infty$ and $\max_{i\leq n} |c_{ni}| = O(1/n)$; (iii) $\mathbf{E}|h(X_1)|^p < \infty$ and $\sup_{n\geq 1} n^{q-1} \sum_{i=1}^{n} |c_{ni}|^q < \infty$ (1),then, as $n \to \infty$,

$$L_n - \mu_n \to 0$$
 a.s.

Recall that the stationary sequence $\{X_i\}$ is called ϕ -mixing if $\phi_n \to 0$, where

$$\phi_n = \sup_{k \ge 1} \sup \{ |P(B|A) - P(B)|; A \in \mathcal{F}_1^k, B \in \mathcal{F}_{k+n}^\infty \}$$

and \mathcal{F}_a^b denotes the σ -field generated by $X_a, X_{a+1}, \ldots, X_b$.

Theorem 2. Let $\{X_i\}$ be a strictly stationary and ϕ -mixing sequence with $\sum_{i>1} \phi_i < \infty$. Under the assumptions of Theorem 1, we have that the statement

$$L_n - \mu_n \to_{a.s.} 0, \quad n \to \infty,$$

holds.