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PROBABILITY INEQUALITIES FOR GENERALIZED L-STATISTICS

I. S. Borisov and E. A. Baklanov UDC 519.21

1. Introduction

Let X1, . . . , Xn be independent identically distributed random variables. We study statistics of the
type

Φn =
n∑

i=1

hni(Xn:i), (1)

where Xn:1 ≤ · · · ≤ Xn:n are the order statistics based on the sample {Xi; i ≤ n} and hni : R → R,
i = 1, . . . , n, are measurable functions. In particular, if hni(y) = cnih(y) and h(y) is monotone then Φn

represents the classical L-statistics.
Functionals (1) in this general form are called generalized L-statistics. For the first time, these

statistics were introduced in [1, 2] where asymptotic expansions for the distributions of these statistics
were given in some particular cases. The Fourier analysis of the distributions of Φn is contained in
[3]. Note that the integral-type statistics (integral functionals of the empirical distribution function, for
example, the Anderson–Darling–Cramér statistics) can be represented as (1), but not as the classical
L-statistics (see e.g. [1, 3]). The main purpose of this paper is to obtain upper bounds for the tail
probability and moments of Φn. Exponential bounds for the tail probabilities of the classical L-statistics
were obtained in [4] by means of approximation of L-statistics by U -statistics with nondegenerate kernels,
which makes it possible to reduce the problem to analogous problems for sums of independent real-valued
random variables. The approach of the present paper illustrates the capabilities of multivariate analysis:
the problems in question are reduced to analogous problems for sums of independent random elements
taking values in a functional Banach space. In the previous paper [5], containing some moment inequalities
for generalized L-statistics, we suggested an analogous approach using a special property of the order
statistics based on a sample from an exponential distribution. In the present paper, to study generalized
L-statistics we essentially use the properties of order statistics based on a sample from the (0, 1)-uniform
distribution, although we impose no additional restrictions on the sample distribution for the so-called
L-statistics with separated kernels which are introduced below.

Note also that the term “generalized L-statistics” was introduced in [6] where a generalization of the
classical L-statistics theory was considered in a somewhat different aspect related to another construction
of order statistics.

2. Statement of the Main Results

2.1. Additive functionals of centered order statistics. In this section we consider additive
functionals of centered and normalized order statistics based on a sample from the (0, 1)-uniform distri-
bution:

An =
n∑

i=1

hni(
√

n + 1(Xn:i −EXn:i)). (2)
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Obviously, every generalized L-statistic can be represented in this form because of unrestricted depen-
dence of the kernels hni on the subscripts in (1) and the well-known properties of the quantile transforms,
although this form merely plays an auxiliary role in our considerations.

Theorem 1. Let the functions hni(x), i = 1, . . . , n, in (2) satisfy the following condition:

|hni(x)| ≤ ani + bni|x|m for some m ≥ 1, (3)

where ani and bni are positive constants depending only on i and n. Then

P{An ≥ y} ≤ 4 exp
{
−(y/2− Λ)2/m − 2βy1/m

2(B2 + Hy1/m)

}
, (4)

where

β = C(m)(n + 1)−1/2

(
n∑

i=1

im/2bni

)1/m

,

C(m) =
{ 1, if 1 ≤ m < 2,

(1 + Γ(m + 1))
1
m max{1 + m

2 ; (2e)
1
m ((1 + m

2 )e)
1
2 }, if m ≥ 2,

Γ(x) is the gamma-function, Λ =
∑n

i=1 ani, and

B2 = 2(n + 1)−1
n∑

i=1

(
n∑

j=i

bnj

)2/m

, H = (n + 1)−1/2

(
n∑

i=1

bni

)1/m

.

Consider the special case hni(x) = |x|m/(n + 1), m ≥ 2. Then ani = 0, bni = (n + 1)−1, and the
statistic An has the form

An =

1∫
0

|Gn(t)|m dt,

where Gn(t) is the quantile empirical process based on a sample from the uniform distribution on [0, 1]
(see Section 3 for more detail). It is well known (see, for example, [7]) that, as n →∞, the distributions
of the processes Gn(t) converge weakly in the space D[0, 1] to the distribution of a “Brownian bridge”
w0(t). Thus, we have

P{An ≥ y} = P
{ 1∫

0

|Gn(t)|mdt ≥ y

}
→ P{‖w0‖ ≥ y1/m} as n →∞,

where ‖·‖ is the standard norm in Lm([0, 1], dt). From an inequality in [8] for Gaussian random elements
of an arbitrary Banach space, we can obtain the following unimprovable estimate:

P{‖w0‖ ≥ y1/m} ≤ exp
{
−(y1/m − σ)2

2σ2

}
,

where y ≥ σm, σm = 2m/2π−1/2Γ((m + 1)/2)B(m/2 + 1,m/2 + 1), and B(x, y) is the beta-function.
On the other hand, from (4) we obtain the upper bound

P{An ≥ y} ≤ 4 exp
{
−y2/m − 4C(m)y1/m

4(1 + y1/mn−1/2)

}
.

So, in this case inequality (4) is exact in some sense.
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Consider the classical L-statistic with the kernel hni(x) = x(n(n + 1))−1/2. In this case the statistic
An has the following form:

An =
1√
n

n∑
i=1

(Xi −EXi),

where X1, . . . , Xn are independent random variables distributed uniformly on [0, 1]. Using (4) with
ani = 0, bni = (n(n + 1))−1/2, and m = 1, we obtain the upper bound

P{An ≥ y} ≤ 4 exp
{
− y2 − 16y/3

8(2/3 + yn−1/2)

}
,

which is rather close to the right-hand side of the classical Bernstein inequality for sums of independent
bounded random variables. We compare this result with the following estimate for the tail probability of
the classical L-statistic in [4]:

P{An ≥ y} ≤ exp
{
− C0y

2

1 + y3/2n−1/4

}
,

where the absolute constant C0 can be calculated explicitly. It is easy to see that the logarithmic
asymptotics of the right-hand side of the last inequality coincides in the order of magnitude with the
analogous asymptotics of the right-hand side of the Bernstein inequality only in the range y = O(n1/6).

Introduce the centered generalized L-statistic

Φn =
n∑

i=1

hni(Xn:i)−
n∑

i=1

hni(EXn:i). (5)

The following is immediate from Theorem 1.

Corollary 1. Let the functions hni, i = 1, . . . , n, in (5) satisfy the Lipschitz condition with the
respective constants bni. Then

P{Φn ≥ y} ≤ 4 exp
{
− y2 − 8β1y

8(B2
1 + H1y)

}
, (6)

where

β1 =
1

n + 1

n∑
i=1

i1/2bni, B2
1 =

2
(n + 1)2

n∑
i=1

(
n∑

j=i

bnj

)2

, H1 =
1

n + 1

n∑
i=1

bni.

Inequality (6) follows from the relation

|Φn| ≤
n∑

i=1

bni|Xn:i −EXn:i| =
1√

n + 1

n∑
i=1

bni|
√

n + 1(Xn:i −EXn:i)| (7)

and Theorem 1.
The next two assertions contain moment inequalities for the above statistics.

Theorem 2. Under the conditions of Theorem 1, for all r ≥ 2

E|An|r ≤ 4r

{(
n∑

i=1

ani

)r

+ 2rm−1βrm

}
+

2r(m+2)−1

(n + 1)rm/2
(Krm)rm

{
Γ(rm + 1)Bn,r + B

rm/2
n,2/m

}
, (8)

where

Bn,r =
n∑

i=1

( n∑
j=i

bnj

)r

,

K is an absolute positive constant, and β is defined in Theorem 1.
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Corollary 2. Under the conditions of Corollary 1, for all r ≥ 2

E|Φn|r ≤
23r−1

(n + 1)r

{(
n∑

i=1

i1/2bni

)r

+ (K1r)r
(
Γ(r + 1)Bn,r + B

r/2
n,2

)}
, (9)

where K1 is an absolute positive constant.

Relation (9) follows from (7) and (8).
We again consider the special case hni(x) = x(n(n + 1))−1/2 in which

An =
1√
n

n∑
i=1

(Xi −EXi).

It is shown in [9] that, for independent random variables ζ1, . . . , ζn with mean zero and for all c > r/2,
the following inequality holds:

E

∣∣∣∣∣
n∑

i=1

ζi

∣∣∣∣∣
r

≤ cr
n∑

i=1

E|ζi|r + rcr/2ecB(r/2, c− r/2)

(
n∑

i=1

Eζ2
i

)r/2

. (10)

Putting in (10) ζi = Xi−EXi, c = 1+r/2, and noting that E(X1−EX1)2 = 1, E|X1−EX1|r ≤ Γ(r+1),
we obtain

E|An|r ≤ 2(1 + r/2)r/2e1+r/2 + (1 + r/2)rΓ(r + 1)n1−r/2.

On the other hand, from (8) we deduce the upper bound

E|An|r ≤ 23r−1(1 + (Kr)r) + 23r−1(Kr)rΓ(r + 1)n1−r/2,

and this estimate is close to that above.

2.2. L-statistics with separated kernels. We now consider the following L-statistics with
separated kernels:

Ln =
n∑

i=1

cnih(Xn:i), (11)

where cni, i = 1, . . . , n, are some constants, h is an arbitrary measurable (not necessarily monotone)
function, and X1 has an arbitrary distribution function F .

Without loss of generality, we assume that
∑n

i=1 cni = 0, since the statistic Ln can be represented in
the following form:

Ln =
n∑

i=1

c̃nih(Xn:i) + c̃n

n∑
i=1

h(Xi), (12)

where c̃ni = cni − c̃n, c̃n = n−1
∑n

i=1 cni, and the second term on the right-hand side of (12) is a sum of
independent identically distributed random variables for which the moment inequalities and estimates of
the tail probability are well known.

It is worth noting that L-statistics of the form (11) were studied by many authors under various
restrictions on the weights cni and the distribution function F . Asymptotic normality of these statistics
was investigated mainly in the case of a monotone h(x) (or, in an equivalent setting, h(x) = x and
the sample distribution is arbitrary; see, for example, [10–14]). Note that the authors of [13] also used
multivariate arguments for asymptotic analysis of such L-statistics. The behavior of large and moderate
deviations of Ln was studied in [4, 15, 16].
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As noted in [3], statistics of the form (11) with smooth kernels can be represented as integral-type
functionals of the empirical distribution function Fn(t). Indeed, suppose that h ∈ C1(R) and denote by
φn(x) an arbitrary continuous function on [0, 1] satisfying the following conditions:

φn(0) = 0, φn(k/n) =
k∑

i=1

cni, k = 1, . . . , n.

The condition
∑n

i=1 cni = 0 implies the equality φn(1) = 0. Integrating by parts, we then obtain

Ln =
n∑

i=1

{
φn

(
i

n

)
− φn

(
i− 1

n

)}
h(Xn:i) =

∫
R

h(t) dφn(Fn(t)) = −
∫
R

φn(Fn(t))h′(t) dt.

Similar representations can be actually found in many papers dealing with asymptotic analysis of L-
statistics.

Define the function φn(x) as follows:

φn(x) = ncnkx +
k∑

i=1

cni − kcnk,
k − 1

n
< x <

k

n
, k = 1, . . . , n.

Obviously, the function φn(x) satisfies the Lipschitz condition with the constant ncn, where cn =
max1≤k≤n |cnk|. Put

γn =
∫
R

φn(F (t))h′(t) dt.

Then we have
Ln + γn =

∫
R

{φn(F (t))− φn(Fn(t)}h′(t) dt. (13)

We will use the following notation:

g(t, z) =
{

F (t) if t ≤ z,

1− F (t) if t > z,

αk ≡ α(k, F, h) =
∫
R

(∫
R

g(t, z)|h′(t)| dt

)k

dF (z),

HF =
∫
R

(F (t)(1− F (t)))1/2|h′(t)| dt.

The conditions of Theorems 3 and 4 (see below) contain moment restrictions in terms of HF and αk in
particular. Thus, the properties of these characteristics as well as the comparison of the above-mentioned
restrictions with the classical moment conditions of summation theory are of special interest.

Proposition. The following hold:
1. Eg2(t, X1) = F (t)(1− F (t).
2. α1 ≤ HF .
3. αk ≥ αk

1 , k ≥ 1.
4. If h is a monotone function then αk ≤ 2kE|h(X1)|k, k ≥ 1.
5. Assume that δ1 ≤ |h′(t)| ≤ δ2 for some positive δ1 and δ2 and that HF < ∞. Then

P(|X1| ≥ x) = o(x−2) as x →∞.
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In particular, E|X1|2(log+ |X1|)−1−ε < ∞ for all ε > 0.
6. Assume that |h′(t)| ≤ δ|t|β for some δ > 0 and β ≥ 0 and that

E|X1|2(1+β)(log+ |X1|)2+ε < ∞

for some ε > 0. Then HF < ∞.

Remark. As follows from the Proposition, existence of HF and existence of the second moment of
the sample are close conditions. Let us study this relation in more detail. Suppose that the function h
satisfies the following condition: δ1 ≤ |h′(t)| ≤ δ2 for some positive δ1 and δ2. In this case, finiteness of
HF is equivalent to that of H̃F =

∫
R
√

F (t)(1− F (t))dt.
It is noted in [14, p. 686] that, if the distribution function F has regularly varying tails, then existence

of the finite second moment and finiteness of H̃F are equivalent conditions. However, this statement is
false. For simplicity, we consider the case in which the left and right tails of the distribution function
F behave at the infinities as |t|−pL(|t|), p > 0, where L(t) is a slowly varying function. Then existence
of the finite second moment and that of H̃F amount to convergence, for some t0 > 0, of the respective
integrals

∞∫
t0

t1−pL(t) dt,

∞∫
t0

t−p/2L1/2(t) dt.

These integrals converge simultaneously for p > 2 and diverge for p < 2 (see, for example, [17]). Consider
the case p = 2. In this case, existence of the second moment follows from finiteness of H̃F . Indeed, if
f(x) is a nonnegative decreasing function and the integral

∫∞
0 f(x)dx converges, then f(x) = o(1/x) as

x →∞. This follows from the relation

0 ≤ xf(x) ≤ 2

x∫
x/2

f(t) dt → 0, x →∞.

Therefore, if
∞∫

t0

t−1L1/2(t) dt < ∞,

then L(x) → 0 as x → ∞; i.e., L(x) < 1 for sufficiently large x. It follows that L(x) ≤ L1/2(x) for
sufficiently large x and, consequently,

∞∫
t0

t−1L(t) dt < ∞.

The converse statement is false. Indeed, let L(t) = C log−q t, 1 < q < 2. Then the second moment
obviously exists while H̃F = ∞. In other words, in the class of the distribution functions having regularly
varying tails, finiteness of H̃F is a stronger condition than existence of the finite second moment.

Theorem 3. Let the function h(x) in (11) be continuously differentiable and HF < ∞. If αk < ∞
for some k ≥ 1 then for all y > y0

P{Ln + γn ≥ y} ≤ exp
{
− log 3

2

(
y − y0

2y0

) log 2
log 3
}

+
6k+2ck

nnαk

2(y − y0)k
, (14)

where y0 = 24HF cn
√

n if αk ≤ (24HF )knk/2−1/36, and y0 = cn(36nαk)1/k if αk > (24HF )knk/2−1/36.

222



If αk ≤ k!B2Hk−2/2 for some constants B2 and H > 0 and for every integer k ≥ 2 then

P{Ln + γn ≥ y} ≤ exp
{
− y2 − 2HF cn

√
ny

2cn(ncnB2 + yH)

}
. (15)

If |X1| ≤ b almost surely then

P{Ln + γn ≥ y} ≤ exp
{
−(y −HF cn

√
n)2

2nc2
nH2

0

}
, (16)

where H0 =
∫ b
−b |h

′(t)|dt.

Corollary 3. Let the function h(x) in (11) be monotone and continuously differentiable, HF < ∞,
and E|h(X1)|k ≤ k!B2Hk−2/2 for every integer k ≥ 2 and some positive constants B and H. Then

P{Ln + γn ≥ y} ≤ exp
{
− y2 − 2HF cn

√
ny

4cn(2ncnB2 + yH)

}
. (17)

Relation (17) follows from (15) and the inequality αk ≤ 2kE|h(X1)|k (see the Proposition).

Theorem 4. Let the function h(x) in (11) be continuously differentiable, HF < ∞, and αk < ∞ for
some k ≥ 2. Then

E|Ln + γn|k ≤ 2k−1ck
n

(
(Ck)kαk + Hk

F

)
nk/2, (18)

where C is an absolute positive constant.

3. Proofs of the Main Results

3.1. Proofs of Theorems 1 and 2.
Proof of Theorem 1. Define the random process Gn(t) and the function ϕn(t, z) as follows: For all

t ∈ [i/(n + 1), (i + 1)/(n + 1)), i = 0, 1, . . . , n, we put

Gn(t) =
√

n + 1(Xn:i −EXn:i), ϕn(t, z) = (n + 1)hni(z), Xn:0 ≡ 0, hn0 ≡ 0.

Then the following equality holds:

An =

1∫
0

ϕn(t, Gn(t)) dt. (19)

Let ν1, . . . , νn+1 be independent random variables having the exponential law with parameter 1. Put
τi = νi−1. Obviously, Eτi = 0, Eτ2

i = 1. We construct the partial sum process Sn+1(t) using the random
variables {τi}n+1

i=1 :

Sn+1(t) =
Sk√
n + 1

, if
k

n + 1
≤ t <

k + 1
n + 1

,

k = 0, 1, . . . , n, Sn+1(1) =
Sn+1√
n + 1

,

where Sk =
∑k

i=1 τi, S0 = 0. We also consider the conditional partial sum process S0
n+1(t) with the right

endpoint fixed at 0. In other words, S0
n+1(t) is a random process with finite-dimensional distributions

coinciding with those of the process Sn+1(t) under the condition Sn+1(1) = 0, i.e., for all 0 < t1 < t2 <
· · · < tk < 1,

P(S0
n+1(t1) < x1, . . . , S

0
n+1(tk) < xk) = P(Sn+1(t1) < x1, . . . , Sn+1(tk) < xk|Sn+1(1) = 0).

The following assertion is proven in [7].
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Lemma 1. The vectors
{
Gn

(
i

n+1

)}n

i=1
and

{
S0

n+1

(
i

n+1

)}n

i=1
coincide in distribution.

Thus, we have

P{An ≥ y} = P
{ 1∫

0

ϕn(t, Gn(t)) dt ≥ y

}
= P

{ 1∫
0

ϕn

(
t, S0

n+1(t)
)
dt ≥ y

}

≤ P
{ N+1

n+1∫
0

ϕn

(
t, S0

n+1(t)
)
dt ≥ y

2

}
+ P

{ 1∫
N+1
n+1

ϕn

(
t, S0

n+1(t)
)
dt ≥ y

2

}

= P
{ N+1

n+1∫
0

ϕn

(
t, S0

n+1(t)
)
dt ≥ y

2

}
+ P

{ 1∫
N+1
n+1

ϕn

(
t,−
(
S0

n+1(1)− S0
n+1(t)

))
dt ≥ y

2

}
, (20)

where N is the integral part of n/2. Put

P1 = P
{ N+1

n+1∫
0

ϕn

(
t, S0

n+1(t)
)
dt ≥ y

2

}
,

P2 = P
{ 1∫

N+1
n+1

ϕn

(
t,−
(
S0

n+1(1)− S0
n+1(t)

))
dt ≥ y

2

}
.

Lemma 2. For all n ≥ 5,

P1 ≤ 2P
{ N+1

n+1∫
0

ϕn

(
t, Sn+1(t)

)
dt ≥ y

2

}
,

P2 ≤
√

3P
{ 1∫

N+1
n+1

ϕn(t,−
(
Sn+1(1)− Sn+1(t))) dt ≥ y

2

}
.

Proof. It was shown in [7] that, for each event F in the σ-algebra generated by paths of the process
S0

n+1(t) until the time moment 1− v, the following inequality holds:

P
(
S0

n+1(·) ∈ F
)
≤ CP(Sn+1(·) ∈ F ),

where C = sup f1(−x)/f2(0), f1 and f2 are probability densities of the random variables Sn+1(1) −
Sn+1(1− v) and Sn+1(1) respectively. Since

f1(−x) =
√

n + 1(l − x
√

n + 1)l−1 exp{x
√

n + 1− l)}/(l − 1)!,

f2(0) = (n + 1)n+3/2e−(n+1)/(n + 1)!,

where l = v(n + 1), we have

C =
(n + 1)!en+1(v(n + 1)− 1)(v(n+1)−1)

(n + 1)n+1(v(n + 1)− 1)!ev(n+1)−1
,
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because the function xNe−x takes a maximal value at the point x = N . Using the Stirling formula
k! = (2πk)1/2(k/e)keθ(k), where 1/(12k + 1) < θ(k) < 1/(12k) (see, for example, [18]), we finally obtain

C ≤
(

v − 1
n + 1

)−1/2

.

Taking the obvious symmetry into account, we can use the analogous arguments for evaluating P2.
Substituting (n−N)/(n+1) and (N +1)/(n+1) for v, we obtain the corresponding inequalities. Lemma 2
is proven.

From (20) and Lemma 2 we now derive the estimate

P{An ≥ y} ≤ 2P
{ N+1

n+1∫
0

ϕn(t, Sn+1(t)) dt ≥ y

2

}

+
√

3P
{ 1∫

N+1
n+1

ϕn(t,−(Sn+1(1)− Sn+1(t))) dt ≥ y

2

}
. (21)

We evaluate each summand on the right-hand side of (21). From (3) it follows that |ϕn(t, z)| ≤
(n + 1)(ani + bni|z|m) for all t ∈ [i/(n + 1), (i + 1)/(n + 1)), i = 1, . . . , n. Then

N+1
n+1∫
0

ϕn(t, Sn+1(t)) dt ≤
N∑

i=1

i+1
n+1∫
i

n+1

|ϕn(t, Sn+1(t))| dt ≤
N∑

i=1

i+1
n+1∫
i

n+1

(n + 1){ani + bni|Sn+1(t)|m} dt

=
N∑

i=1

ani +

1∫
0

|Sn+1(t)|mλ(dt) =
N∑

i=1

ani + ‖Sn+1(t)‖m
λ , (22)

where ‖ · ‖λ is the standard norm in Lm([0, 1], λ), λ(dt) = q1(t)dt, q1(t) = (n + 1)bni if t ∈ [i/(n + 1),
(i + 1)/(n + 1)), i = 1, . . . , N , and q1(t) = 0 for other t.

By analogy with the above, we have

1∫
N+1
n+1

ϕn(t,−(Sn+1(1)− Sn+1(t))) dt ≤
n∑

i=N+1

ani + ‖S̃n+1(t)‖m
µ , (23)

where S̃n+1(t) = Sn+1(1)− Sn+1(t), ‖ · ‖µ is the standard norm in Lm([0, 1], µ), µ(dt) = q2(t)dt, q2(t) =
(n + 1)bni if t ∈ [i/(n + 1), (i + 1)/(n + 1)), i = N + 1, . . . , n, and q2(t) = 0 if t ∈ [0, (N + 1)/(n + 1)).
Substituting (22) and (23) into (21), we obtain

P{An ≥ y} ≤ 2P

{
‖Sn+1(t)‖m

λ ≥ y

2
−

N∑
i=1

ani

}
+
√

3P

{
‖S̃n+1(t)‖m

µ ≥ y

2
−

n∑
i=N+1

ani

}
.

It was proven in [8] that, if independent random variables Y1, . . . , Yn in a separable Banach space
satisfy

n∑
j=1

E‖Yj‖k ≤ k!B2Hk−2/2, k = 2, 3, . . . , (24)
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for some constants B and H > 0, then the following estimate holds:

P(‖Y1 + · · ·+ Yn‖ − β ≥ x) ≤ exp
{
− x2

2(B2 + xH)

}
,

where β = E‖Y1 + · · ·+ Yn‖. It follows that

P(‖Y1 + · · ·+ Yn‖ ≥ x) ≤ exp
{
− x2 − 2βx

2(B2 + xH)

}
. (25)

We note that the random processes Sn+1(t) and S̃n+1(t) can be represented as sums of independent
nonidentically distributed random variables with mean zero and values in the corresponding separable
Banach spaces Lm(·):

Sn+1(t) =
n+1∑
i=1

ξi(t) and S̃n+1(t) =
n+1∑
i=1

ηi(t),

where

ξi(t) =
τi√

n + 1
I
{

i

n + 1
≤ t

}
, ηi(t) =

τi√
n + 1

I
{

i

n + 1
> t

}
.

We also note that

‖Sn+1(t)‖λ =

∥∥∥∥∥
N∑

i=1

ξi(t)

∥∥∥∥∥
λ

, ‖S̃n+1(t)‖µ =

∥∥∥∥∥
n+1∑

i=N+2

ηi(t)

∥∥∥∥∥
µ

.

Finally, we have to verify that the random variables ξ1(t), . . . , ξn+1(t) and η1(t), . . . , ηn+1(t) satisfy (24).
By the definition of the norm in Lm([0, 1], λ), we have

‖ξi(t)‖m
λ =

1∫
0

|ξi(t)|m λ(dt) =

N+1
n+1∫
i

n+1

|τi|m

(n + 1)m/2
q1(t) dt

=
N∑

j=i

j+1
n+1∫
j

n+1

|τi|m

(n + 1)m/2
(n + 1)bnj dt =

|τi|m

(n + 1)m/2

N∑
j=i

bnj , i = 1, . . . , N.

Whence it follows that

E‖ξi(t)‖k
λ ≤ k!

(
N∑

j=i
bnj

)k/m

(n + 1)k/2
, k = 2, 3, . . . , i = 1, . . . , N.

It is easy to verify that
N∑

i=1

E‖ξi(t)‖k
λ ≤ k!B2Hk−2/2, k = 2, 3, . . . ,

where

B2 =
2

n + 1

n∑
i=1

(
n∑

j=i

bnj

)2/m

, H =
1√

n + 1

(
n∑

i=1

bni

)1/m

.
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We now estimate E‖Sn+1(t)‖λ. Let m ≥ 2. Then

‖Sn+1(t)‖2
λ =

( N+1
n+1∫
1

n+1

∣∣∣ N∑
j=1

ξj(t)
∣∣∣m λ(dt)

)2/m

=
( N∑

i=1

i+1
n+1∫
i

n+1

∣∣∣ i∑
j=1

τj√
n + 1

∣∣∣m(n + 1)bni dt

)2/m

=

(
N∑

i=1

bni

∣∣∣∣∣
i∑

j=1

τj√
n + 1

∣∣∣∣∣
m)2/m

=
1

n + 1

(
N∑

i=1

bni

∣∣∣∣∣
i∑

j=1

τj

∣∣∣∣∣
m)2/m

.

It follows that

E‖Sn+1(t)‖λ ≤
(
E‖Sn+1(t)‖2

λ

)1/2 ≤ 1√
n + 1

(
N∑

i=1

bniE

∣∣∣∣∣
i∑

j=1

τj

∣∣∣∣∣
m)1/m

. (26)

Putting in (10) c = 1 + m/2, we obtain

E

∣∣∣∣∣
i∑

j=1

τj

∣∣∣∣∣
m

≤ C1(m)

(
i∑

j=1

E|τj |m +

(
i∑

j=1

Eτ2
j

)m/2)
, (27)

where C1(m) = max{(1 + m/2)m; 2(1 + m/2)m/2e1+m/2}. Since Eτ2
j = 1 and E|τj |m ≤ Γ(m + 1), from

(27) we derive

E

∣∣∣∣∣
i∑

j=1

τj

∣∣∣∣∣
m

≤ C1(m)(1 + Γ(m + 1))im/2. (28)

Substituting (28) into (26), we have

E‖Sn+1(t)‖λ ≤
C

1/m
1 (m)(1 + Γ(m + 1))1/m

√
n + 1

(
N∑

i=1

im/2bni

)1/m

≡ β1.

Now, consider the case 1 ≤ m < 2. Applying the Hölder inequality twice, we obtain the following
estimate:

E‖Sn+1(t)‖λ ≤
(
E‖Sn+1(t)‖m

λ

)1/m =
1√

n + 1

(
N∑

i=1

bniE

∣∣∣∣∣
i∑

j=1

τj

∣∣∣∣∣
m)1/m

≤ 1√
n + 1

(
N∑

i=1

bni

(
E

(
i∑

j=1

τj

)2)m/2)1/m

=
1

n + 1

(
N∑

i=1

im/2bni

)1/m

≡ β1.

By analogy with the above,

‖ηi(t)‖µ =
|τi|√
n + 1

(
i−1∑

j=N+1

bnj

)1/m

, i = N + 2, . . . , n + 1,

n+1∑
i=N+2

E‖ηi(t)‖k
µ ≤ k!B2Hk−2/2, k = 2, 3, . . . ,

E‖S̃n+1(t)‖µ ≤ β2 =
C(m)√
n + 1

(
n∑

i=N+1

(i−N)m/2bni

)1/m

.
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Observe that

max{β1;β2} ≤ β = C(m)(n + 1)−1/2

(
n∑

i=1

im/2bni

)1/m

.

Substituting B2, H, and β into (25), we obtain (4). Theorem 1 is proven.
Proof of Theorem 2. From (19) and Lemma 2 it follows that

E|An|r ≤ 2r−1

(
E
∣∣∣∣

N+1
n+1∫
0

ϕn(t, Gn(t)) dt

∣∣∣∣r + E
∣∣∣∣

1∫
N+1
n+1

ϕn(t, Gn(t)) dt

∣∣∣∣r)

= 2r−1E
∣∣∣∣

N+1
n+1∫
0

ϕn

(
t, S0

n+1(t)
)
dt

∣∣∣∣r + 2r−1E
∣∣∣∣

1∫
N+1
n+1

ϕn

(
t, S0

n+1(t)
)
dt

∣∣∣∣r

≤ 2rE
∣∣∣∣

N+1
n+1∫
0

ϕn(t, Sn+1(t)) dt

∣∣∣∣r + 2r−1
√

3E
∣∣∣∣

1∫
N+1
n+1

ϕn(t,−S̃n+1(t)) dt

∣∣∣∣r. (29)

Substituting (22) and (23) into (29), we obtain

E|An|r ≤ 4r

(
n∑

i=1

ani

)r

+ 4r−1
{
2E‖Sn+1(t)‖rm

λ +
√

3E‖S̃n+1(t)‖rm
µ

}
.

It is proven in [19] that, for independent centered random variables Y1, . . . , Yn in a separable Banach
space, the following inequality holds:

E| ‖Sn‖ −E‖Sn‖ |l ≤ (K̃l)l

(
n∑

i=1

E‖Yi‖l +

(
n∑

i=1

E‖Yi‖2

)l/2)
, l ≥ 2, (30)

where Sn =
∑n

i=1 Yi, K̃ is an absolute positive constant. Putting l = rm in (30), we obtain

E| ‖Sn+1(t)‖λ −E‖Sn+1(t)‖λ|rm ≤ (K̃1rm)rm

{
N∑

i=1

E‖ξi(t)‖rm
λ +

(
N∑

i=1

E‖ξi(t)‖2
λ

) rm
2
}

,

E| ‖S̃n+1(t)‖µ −E‖S̃n+1(t)‖µ|rm ≤ (K̃2rm)rm

{
n+1∑

i=N+2

E‖ηi(t)‖rm
µ +

(
n+1∑

i=N+2

E‖ηi(t)‖2
µ

) rm
2
}

.

It is not difficult to verify that

E‖ξi(t)‖rm
λ ≤ Γ(rm + 1)

(n + 1)rm/2

(
N∑

j=i

bnj

)r

, E‖ξi(t)‖2
λ =

1
n + 1

(
N∑

j=i

bnj

)2/m

,

E‖ηi(t)‖rm
µ ≤ Γ(rm + 1)

(n + 1)rm/2

(
i−1∑

j=N+1

bnj

)r

, E‖ηi(t)‖2
µ =

1
n + 1

(
i−1∑

j=N+1

bnj

)2/m

.
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It remains to use the simple inequality (for an arbitrary norm)

E‖Sn+1(t)‖rm ≤ 2rm−1E| ‖Sn+1(t)‖ −E‖Sn+1(t)‖ |rm + 2rm−1(E‖Sn+1(t)‖)rm

and the upper bounds for E‖Sn+1(t)‖λ and E‖S̃n+1(t)‖µ obtained in Theorem 1. Theorem 2 is proven.
3.2. Proofs of Theorems 3 and 4.
Proof of the Proposition. Items (1)–(3) are immediate from the definitions. Prove item (4).

Indeed, if h is a nondecreasing function, then

∫
R

g(t, z)|h′(t)| dt =

z∫
−∞

F (t)h′(t) dt +

∞∫
z

(1− F (t))h′(t) dt

= h(z)(2F (z)− 1)−
z∫

−∞

h(t) dF (t) +

∞∫
z

h(t) dF (t)

≤ |h(z)|+
∫
R

|h(t)| dF (t) = |h(z)|+ E|h(X1)|,

and the same estimate holds obviously if h is a nonincreasing function. Thus, αk ≤ 2k−1(E|h(X1)|k +
(E|h(X1)|)k) ≤ 2kE|h(X1)|k.

By the condition in item (5), finiteness of HF is equivalent to that of H̃F . Put P (t) = P{|X1| ≥ t},
t > 0. It is not difficult to see that the convergence of∫

R

√
F (t)(1− F (t)) dt

is equivalent to that of
∫∞
0

√
P (t)dt. Thus, P (t) = o(t−2) as t →∞ (see the Remark before Theorem 3).

Whence it follows that E|X1|2(log+ |X1|)−1−ε < ∞ for all ε > 0.
We now prove item (6). Since |h′(t)| ≤ δ|t|β , for every t0 > 0 we have

HF ≤ δ

∫
R

|t|β
√

F (t)(1− F (t)) dt ≤ δ

0∫
−∞

|t|β
√

F (t) dt + δ

∞∫
0

tβ
√

1− F (t) dt

= δ

∞∫
0

tβ
(√

1− F (t) +
√

F (−t)
)

dt ≤ δ
√

2

∞∫
0

tβ
√

1− F (t) + F (−t) dt

≤ δ
√

2
β + 1

tβ+1
0 + δ

√
2

∞∫
t0

tβ
√

P (t) dt.

Furthermore, for all t ≥ t0 from the Chebyshev inequality we obtain

P (t) ≤ E|X1|2(β+1)(log+ |X1|)2+ε

t2(β+1)(log t)2+ε
.

Thus, we have

HF ≤ c1 + c2

∞∫
t0

dt

t(log t)1+ε/2
< ∞,
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where c1 are c2 are some positive constants. The Proposition is proven.
Proof of Theorem 3. Put

Sn(t) =
n∑

i=1

ξi(t), ξi(t) = F (t)− I{Xi < t}.

Obviously, Eξi(t) = 0, Eξ2
i (t) = F (t)(1− F (t)). Since

φn(F (t))− φn(Fn(t)) ≤ ncn|F (t)− Fn(t)| = cn|Sn(t)|; (31)

substituting (31) into (13), we obtain

Ln + γn ≤ cn

∫
R

|Sn(t)||h′(t)| dt = cn‖Sn‖, (32)

where ‖ · ‖ is the standard norm of L1(R, µ), µ(dt) = |h′(t)|dt.
By the definition of the norm in L1(R, µ), we have

‖ξi‖ =
∫
R

|F (t)− I{Xi < t}| |h′(t)| dt =
∫
R

g(t, Xi)|h′(t)| dt.

Whence we obtain

E‖ξi‖k =
∫
R

(∫
R

g(t, z)|h′(t)| dt

)k

dF (z) ≡ αk.

Now we evaluate E‖Sn‖:

E‖Sn‖ =
∫
R

E|Sn(t)| |h′(t)| dt ≤
∫
R

(
ES2

n(t)
)1/2|h′(t)| dt

=
√

n

∫
R

(F (t)(1− F (t)))1/2|h′(t)| dt ≡ HF

√
n.

It is proven in [20] that, if independent random variables Y1, . . . , Yn in a separable Banach space
satisfy

P{‖Y1 + · · ·+ Yn‖ ≥ u0} ≤
1
24

and
n∑

i=1

E‖Yi‖t/ut
0 ≤

1
36

, (33)

then the following inequality holds for all u > u0:

P{‖Y1 + · · ·+ Yn‖ ≥ u} ≤ exp
{
− log 3

2

(
u− uo

2u0

) log 2
log 3
}

+ 6t+2

n∑
i=1

E‖Yi‖t

2(u− uo)t
. (34)

In the same paper it is noted that if the first condition in (33) holds, then both conditions of (33) hold
for u′0 = (36

∑n
i=1 E‖Yi‖t)1/t. Relation (14) follows from (32) and (34).

Next, let αk ≤ k!B2Hk−2/2, k = 2, 3, . . . . Then

n∑
i=1

E‖ξi‖k = nαk ≤ k!(nB2)
Hk−2

2

and (15) follows from (25).
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Suppose that |X1| ≤ b almost surely. Then

‖ξi‖ =

Xi∫
−b

F (t)|h′(t)| dt +

b∫
Xi

(1− F (t))|h′(t)| dt ≤
b∫

−b

|h′(t)| dt ≡ H0.

Finally, to obtain (16) we employ inequality (1.2) in [21]. Theorem 3 is proven.
Proof of Theorem 4. From (30) and (32) we have

E|Ln + γn|k ≤ ck
nE‖Sn‖k ≤ 2k−1ck

n{(E‖Sn‖)k + E| ‖Sn‖ −E‖Sn‖|k}

≤ 2k−1ck
n(E‖Sn‖)k + 2k−1ck

n(C0k)k

{
n∑

i=1

E‖ξi‖k +

(
n∑

i=1

E‖ξi‖2

)k/2}
≤ 2k−1ck

n

(
Hk

F nk/2 + (C0k)k
(
nαk + nk/2α

k/2
2

))
≤ 2k−1ck

n

(
Hk

F + (Ck)kαk

)
nk/2,

where C0 and C are absolute positive constants. Theorem 4 is proven.
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