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1. INTRODUCTION

Let X1, X2, . . . be independent identically distributed random variables. We denote by Xn:1 � · · · � Xn:n the
order statistics based on a sample {Xi; i � n}. Consider a linear combination of order statistics

L(1)
n =

n∑
i=1

cniXn:i

called a (classical) L-statistic. L-order statistics have numerous applications (in particular, in estimation theory).
They are used, for example, in estimation of location and scale parameters (see [5], [15]). For some parametric
families, the coefficients cni can be chosen so that L-statistics are, in a certain sense, equivalent to the maximum-
likelihood estimates (their variances are asymptotically equivalent), which are, as a rule, optimal (see [20]).

Together with classical L-statistics, linear combinations of functions of order statistics are also used (and also
called L-statistics):

L(2)
n =

n∑
i=1

cnih(Xn:i),

where h is a measurable function called a kernel. If h is a monotone function, then the corresponding statistic
L

(2)
n clearly is representable in the form of statistic L

(1)
n based on the sample {h(Xi); i � n}.
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In a majority of works devoted to the asymptotical analysis of L-statistics, there was considered the case of
so-called regular coefficients

cni = n−1J(i/(n + 1)) or cni =
i/n∫

(i−1)/n

J (t) dt,

where J is a sufficiently smooth function (see, foe example, [1]–[3], [16], [17], [24]), or the case of asymptotically
regular coefficients where cni are given by the formulas above with an accuracy of o(1/n) uniformly in all i

(see [1]–[3], [24]).
All works related to the asymptotical analysis of linear combinations of functions of order statistics can be

relatively divided into three groups. The first group is devoted to the analysis of statistics of the form L
(2)
n

based on a sample from an exponential distribution. This is firstly connected with the fact that, using quantile
transformations, every distribution can be reduced to an arbitrary continuous (for example, an exponential or
uniform) one, i.e., we can define a sample {Yi; i � n} with arbitrary distribution function G by the formula
Yi = G−1(F (Xi)), where F is the continuous distribution function of X1, and G−1(z) = inf{t : G(t) � z} is the
quantile transformation of the distribution function of Y1. Since the superposition of G−1 and F is monotone, the
statistics G−1(F (Xn:1)) � · · · � G−1(F (Xn:n)) are order statistics based on the sample {Yi; i � n}. Consequently,

n∑
i=1

cnih(Yn:i) =
n∑

i=1

cnih̃(Xn:i),

where h̃(x) = h(G−1F((x))).
Secondly, this is conditioned by the convenience of analysis of the structure of order statistics that are based

on samples from an exponential distribution and are partial-sum processes constructed by virtue of independent
exponential random variables (for details, see Section 2). Such a representation simplifies the proofs of limit
theorems for corresponding L-statistics (see, for example, [4], [11], [12]). Note that such a structure of order
statistics allows one to reject the requirements of monotonicity of the kernel h and regularity of the coefficients
cni .

The second group is related to the properties of order statistics based on a sample from the uniform distri-
bution on [0, 1] (see [7], [9], [13], [16], [22]). Note that, although L-statistics constructed using the indicated
distributions are represented by each other, the results obtained for these statistics do not follow from each other
because of different assumptions on the kernels.

The third group is devoted to investigation of statistics of the form L
(2)
n without any additional restrictions

on the distribution of a sample. In this group, one mostly requires the monotonicity of the kernel H , which, as
mentioned before, is equivalent to the investigation of statistics L

(1)
n . In this relation, we refer to [1]–[3], [9],

[17], [18], [23], [24].
The most general L-statistics found in the literature are additive functionals of order statistics of the form

�n =
n∑

i=1

hni(Xn:i), (1)

where hni: R → R, i = 1, . . . , n, are measurable functions. In particular, if hni(y) = cnih(y), we get the class
of statistics L

(2)
n , which we call the class with decomposed kernels. If, moreover, h is a monotone function, then,

as mentioned above, we get statistics of the form L
(1)
n .

In the generality considered, it is natural to call functionals of the form (1) generalized L-statistics. They
were first introduced in [27], [28], where asymptotic expansions for distributions of some partial forms of these
statistics were obtained. The Fourier analysis of the distributions of �n is given in [7]. Note that integral
statistics (integral functionals of empirical distribution functions of, for example, the Cramér–Anderson–Darling
statistic) are representable in the form (1) but not in the form of classical L-statistics (for more details, see [7],
[27]). Also note that the term “generalized” for L-statistics was introduced in [21], where a generalization of
the theory of classical L-statistics was considered in another direction of construction of order statistics.
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In [9], we earlier obtained exponential upper bounds for tails of distributions of statistics of the form (1) based
on a sample from the uniform distribution on [0, 1] and also moment inequalities for them; we also obtained
similar upper bounds for linear combinations of functions of order statistics (L-statistics with decomposed
kernels) without any additional restrictions on the distribution of a sample and without the requirements of
monotonicity of the kernel and regular representation of the coefficients cni . In this paper, we obtain exponential
upper bounds for tails of the distribution of statistics of the form (1) based on a sample from an exponential
distribution. Note that, in [8], moment inequalities for such statistics are obtained. We also prove a limit theorem
for a class of generalized L-statistics constructed by virtue of a collection of centered order statistics when the
limit distribution is an integral functional of some Gaussian process. Moreover, in this paper, we investigate
the asymptotic normality of generalized L-statistics based on a sample from the uniform distribution on [0, 1]
and that of L-statistics with decomposed kernels (without any restriction on the sample distribution type). In
particular, for the asymptotic normality of the latter, we essentially relaxed the restrictions on weights assumed
in [17] that actually mean the asymptotic regularity of the coefficients cni . Conditions on cni proposed in this
paper are weaker than this requirement.

2. PROBABILITY INEQUALITIES

In this section, we consider samples from the exponential distribution with parameter 1 only. Consider the
generalized L-statistics

�n =
n∑

i=1

hni(Xn:i − EXn:i ). (2)

THEOREM 1. Let the functions {hni; i � n} in (2) satisfy the following condition on R:

|hni(x)| � ani + bni |x|m for some m � 1, (3)

where ani and bni are positive constants depending on i and n only. Then

P
{
�n � y

}
� exp

{
−(y − �)2/m − 2βy1/m

2(B2 + Hy1/m)

}
, (4)

where

� =
n∑

i=1

ani, B2 =
n∑

i=1

(n + 1 − i)−2B
2/m

ni ,

H = max
1�i�n

(n + 1 − i)−1B
1/m

ni , Bni =
n∑

j=i

bnj ,

β =


(

n∑
i=1

bni

(
i∑

j=1
(n + 1 − j)−2

)m/2)1/m

if 1 � m < 2,(
n∑

i=1
(n + 1 − i)−2

n∑
j=i

b
2/m

nj

)1/2

if m � 2.

Let us consider the partial case hni(x) = x. Then ani = 0, bni = 1, m = 1, and the statistic �n is of the form

�n =
n∑

i=1

(Xi − 1),
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where X1, . . . , Xn are independent exponential random variables with parameter 1; we also have

B2 = n, H = 1, β � (2/n)1/2
n∑

k=1

(
k

n + 1 − k

)1/2

� C
√

n.

In this case, the classical Bernstein inequality gives the estimate

P
{
�n � y

√
n
}

� exp

{
− y2

2(1 + yn−1/2)

}
, y � 0,

while inequality (4) yields the estimate

P
{
�n � y

√
n
}

� exp

{
− y2 − 2Cy

2(1 + yn−1/2)

}
, y � 2C.

The comparison of these two inequalities allows one to make a rather unexpected conclusion that, in the case
considered, the deviation probabilities of two sums

1√
n

n∑
i=1

(Xi − 1) and
1√
n

n∑
i=1

|Xn:i − EXn:i |

are essentially the same.
Let us introduce the centered generalized L-statistic

�̃n =
n∑

i=1

hni(Xn:i) −
n∑

i=1

hni(EXn:i). (5)

As a direct corollary of Theorem 1, one can obtain the following:

THEOREM 2. Let the functions {hni; i � n} in (5) be continuously differentiable on [0, ∞) and such that,
for all x � 0, ∣∣h′

ni(x)
∣∣ � αni + βnix

p for some p � 0, (6)

where αni and βni are positive functions depending on i and n only. Then we have

P
{
�̃n � y

}
� exp

{
− y2 − 4β1y

8(B2
1 + H1y)

}
+ exp

{
−y2/(p+1) − 4β2y

1/(p+1)

8(B2
2 + H2y1/(p+1))

}
, (7)

where

β1 =
n∑

i=1

γni

(
i∑

j=1

(n + 1 − j)−2

)m/2

,

γni = αni + cpβni

(
i∑

j=1

(n + 1 − j)−1

)p

,

B2
1 = 2

n∑
i=1

B̃2
ni, H1 = max

1�i�n
B̃ni ,



Probability inequalities and limit theorems for L-statistics 129

B̃ni = 1

n + 1 − i

n∑
j=i

γnj , cp = max{1, 2p−1},

B2
2 = 2

n∑
i=1

B
2
ni, H2 = max

1�i�n
Bni,

Bni = 1

n + 1 − i

(
n∑

j=i

βnj

)1/(p+1)

,

β2 =


(

n∑
i=1

βni

(
i∑

j=1
(n + 1 − j)−2

)(p+1)/2)1/(p+1)

if 0 � p < 1,(
n∑

i=1
(n + 1 − i)−2

n∑
j=i

β
2/(p+1)

nj

)1/2

if p � 1.

Proof Theorem 1. We denote τni = Xn:i −Xn:i−1, Xn:0 = 0. It is known [26] that τn1, . . . , τnn are independent
and exponentially distributed with corresponding parameters:

P(τni > t) = e−(n+1−i)t , i = 1, . . . , n.

Consequently, τni has the same distribution as that of (n + 1 − i)−1Zi , where Z1, . . . , Zn ere independent
exponential random variables with parameter 1. Thus, order statistics Xn:k are representable in the form of
partial sums of the indicated random variables:

Xn:k =
k∑

i=1

Zi

n + 1 − i
, k = 1, . . . , n.

Consider the random process

Sn(t) =
n∑

i=1

ξi(t), 0 � t � 1, (8)

where

ξi(t) = Zi − 1

n + 1 − i
I{(i − 1)/n � t}. (9)

We define the function

ϕn(t, x) = nhni(x) for all t ∈ [(i − 1)/n, i/n), i = 1, . . . , n. (10)

The following relation holds:

�n =
1∫

0

ϕn(t, Sn(t)) dt. (11)

From (3) it follows that, for all t ∈ [(i − 1)/n, i/n), i = 1, . . . , n, we have

|ϕn(t, x)| � nani + nbni|x|m. (12)
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Now from (11) and (12) we get

∣∣�n

∣∣ �
n∑

i=1

i/n∫
(i−1)/n

(
nani + nbni |Sn(t)|m

)
dt

= � +
1∫

0

|Sn(t)|mλ(dt) = � + ‖Sn‖m,

(13)

where λ(dt) = q(t) dt and q(t) = nbni for (i − 1)/n � t < i/n, and ‖ · ‖ is the standard norm in the space
Lm = Lm([0, 1], λ). Consequently,

P
{
�n � y

}
� P

{‖Sn‖ � (y − �)1/m
}
. (14)

In [19], it is proved that if, for independent random variables Y1, . . . , Yn with values in a separable Banach
space, the inequalities

n∑
j=1

E‖Yj‖k � k!B2Hk−2/2, k = 2, 3, . . . , (15)

hold for some constants B2 and H > 0, then

P
(‖Y1 + · · · + Yn‖ − β � x

)
� exp

{
− x2

2(B2 + xH)

}
,

where β = E‖Y1 + · · · + Yn‖. From this we easily obtain that

P
(‖Y1 + · · · + Yn‖ � x

)
� exp

{
− x2 − 2βx

2(B2 + xH)

}
. (16)

Note that ξ1, . . . , ξn are independent nonidentically distributed random variables with zero mean and values
in the separable Banach space Lm. Let us show that the random variables ξ1, . . . , ξn satisfy condition (15). By
the definition of the Lm norm we have

‖ξi‖k =
( 1∫

0

|ξi(t)|mλ(dt)

)k/m

= |Zi − 1|k
(n + 1 − i)k

( 1∫
(i−1)/n

q(t) dt

)k/m

= |Zi − 1|k
(n + 1 − i)k

(
n∑

j=i

bnj

)k/m

= |Zi − 1|k
(n + 1 − i)k

B
k/m

ni , i = 1, . . . , n.

From this we obtain

E‖ξi‖k �
k!

2

B
k/m

ni

(n + 1 − i)k
, k = 2, 3, . . . , i = 1, . . . , n,
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since E|Zi − 1|2 = 1 and

E|Zi − 1|k =
∞∫

0

|x − 1|ke−x dx = 1

e

1∫
0

xkex dx + 1

e

∞∫
0

xkex dx

� 1/(k + 1) + k!/e � k!/2, k � 3.

One easily checks that

n∑
i=1

E‖ξi‖k � k!

2

(
n∑

i=1

B
2/m

ni

(n + 1 − i)2

)(
max

1�i�n

B
1/m

ni

n + 1 − i

)k−2

= k!B2Hk−2/2, k = 2, 3, . . . .

Let us now estimate E‖Sn‖. Let m � 2. Then we have

‖Sn‖m =
1∫

0

∣∣∣∣∣
n∑

i=1

ξi(t)

∣∣∣∣∣
m

λ(dt) =
n∑

k=1

k/n∫
(k−1)/n

∣∣∣∣∣
k∑

i=1

Zi − 1

n + 1 − i

∣∣∣∣∣
m

nbnk dt

=
n∑

k=1

bnk

∣∣∣∣∣
k∑

i=1

Zi − 1

n + 1 − i

∣∣∣∣∣
m

.

From this we have

‖Sn‖2 =
{

n∑
k=1

bnk

∣∣∣∣∣
k∑

i=1

Zi − 1

n + 1 − i

∣∣∣∣∣
m}2/m

�
n∑

k=1

b
2/m

nk

(
k∑

i=1

Zi − 1

n + 1 − i

)2

.

Consequently,

E‖Sn‖ �
(
E‖Sn‖2)1/2 �


n∑

k=1

b
2/m

nk E

(
k∑

i=1

Zi − 1

n + 1 − i

)2


1/2

=
{

n∑
k=1

b
2/m

nk

k∑
i=1

1

(n + 1 − i)2

}1/2

=
{

n∑
i=1

1

(n + 1 − i)2

n∑
k=i

b
2/m

nk

}1/2

≡ β.
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Let now 1 � m < 2. Then, using the Hölder inequality twice, we get

E‖Sn‖ �
(
E‖Sn‖m

)1/m =
{

n∑
k=1

bnkE

∣∣∣∣∣
k∑

i=1

Zi − 1

n + 1 − i

∣∣∣∣∣
m}1/m

�


n∑

k=1

bnk

E

(
k∑

i=1

Zi − 1

n + 1 − i

)2
m/2


1/m

=


n∑
k=1

bnk

(
k∑

i=1

1

(n + 1 − i)2

)m/2


1/m

≡ β.

Substituting the estimates obtained into (14) and (16), we obtain inequality (4). The theorem is proved.

Proof of Theorem 2. Using the Taylor formula with the remainder in the integral form, we get

�̃n =
n∑

i=1

(Xn:i − EXn:i )

1∫
0

h′
ni

(
EXn:i + θ(Xn:i − EXn:i )

)
dθ.

From condition (6) we get the estimate

∣∣�̃n

∣∣ �
n∑

i=1

|Xn:i − EXn:i |
1∫

0

(
αni + βni |EXn:i + θ(Xn:i − EXn:i)|p

)
dθ

�
n∑

i=1

|Xn:i − EXn:i |
1∫

0

(
αni + cpβni(EXn:i)

p + cpβni |Xn:i − EXn:i |pθp
)

dθ

�
n∑

i=1

(
αni + cpβni(EXn:i)

p
) |Xn:i − EXn:i | + cp

n∑
i=1

βni |Xn:i − EXn:i |p+1

=
n∑

i=1

γni|Xn:i − EXn:i | + cp

n∑
i=1

βni |Xn:i − EXn:i |p+1. (17)

Let

Rn1 =
n∑

i=1

γni |Xn:i − EXn:i | and Rn2 =
n∑

i=1

βni |Xn:i − EXn:i |p+1. (18)

Then

P
{
�̃n � y

}
� P{Rn1 � y/2} + P

{
Rn2 � y/(2cp)

}
. (19)

Applying the estimates of Theorem 2 to Rn1 and Rn2 in (19), we get (7). The theorem is proved.
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3. NORMAL APPROXIMATION

3.1. A limit theorem for the statistics An

Consider the generalized L-statistics

An =
n∑

i=1

hni

(
Un:i − i/(n + 1)

)
(20)

based on a sample from the uniform distribution on [0, 1]. Let w0(t), 0 � t � 1, be a Gaussian random process

with zero mean and correlation function min{s, t} − st , 0 � s, t � 1. By
d−→ we denote the weak convergence

of distributions.

THEOREM 3. Suppose that there exists a continuous function ϕ(t, x), 0 � t � 1, x ∈ R, such that, for all
x ∈ R,

max
1�i�n

sup
(i−1)/n<t�i/n

∣∣nhni(x/
√

n) − ϕ(t, x)
∣∣ � εnψ(x), (21)

where εn → 0 as n → ∞, and ψ(x) � 0 is a continuous function. Then

An
d−→

1∫
0

ϕ(t, w0(t)) dt as n → ∞. (22)

Proof of Theorem 3. We define the random process Gn(t) and function ϕn(t, x) as follows. For all t ∈
((i − 1)/n, i/n], i = 1, . . . , n, we set

Gn(t) = n1/2(Un:i − i/(n + 1)
)
, ϕn(t, x) = nhni

(
xn−1/2). (23)

Then we have

An =
1∫

0

ϕn(t, Gn(t)) dt. (24)

From (24) we get

An =
1∫

0

ϕ(t, Gn(t)) dt +
1∫

0

{ϕn(t, Gn(t)) − ϕ(t, Gn(t))} dt. (25)

It is known (see, for example, [6]), that, as n → ∞, the distributions of the processes Gn(t) converge to a
Brownian bridge w0(t) in the sense of the so-called C-convergence in D[0, 1]. Since the function ϕ(t, x) is
continuous in both variables, the functional

T (x) =
1∫

0

ϕ(t, x(t)) dt

on D[0, 1] is continuous in the uniform metric. Consequently, by the invariance principle (see [10]), the
distributions of

T (Gn) =
1∫

0

ϕ(t, Gn(t)) dt
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weakly converge to the distribution of

T (w0) =
1∫

0

ϕ(t, w0(t)) dt.

Let us estimate the second summand on the right-hand side of (25). From (21) it follows that

1∫
0

|ϕn(t, Gn(t)) − ϕ(t, Gn(t))| dt � εn

1∫
0

ψ(Gn(t)) dt. (26)

By the continuity of ψ(x), similarly to the above, we have

1∫
0

ψ(Gn(t)) dt
d−→

1∫
0

ψ(w0(t)) dt as n → ∞.

Since εn → 0, the right-hand side of (26) converges to zero in probability. Hence, (22) follows. The theorem is
proved.

3.2. Asymptotic normality

3.2.1. Generalized L-statistics. Consider the centered generalized L-statistic

Ān =
n∑

i=1

hni(Un:i) −
n∑

i=1

hni(EUn:i), (27)

which is also based on a sample from the uniform distribution on [0, 1] and has smooth kernels.
For all t ∈ ((i − 1)/n, i/n], i = 1, . . . , n, we set

αn(t) = n1/2h′
ni(i/(n + 1)).

We denote

σ 2
n =

1∫
0

1∫
0

αn(x)αn(y)
(

min{x, y} − xy
)

dx dy.

Since σ 2
n is the second moment of some Gaussian random variable (see the proof of Theorem 4), we have that

σ 2
n � 0. Note that if h′

ni(i/(n + 1)) �= 0 at least for one i, then σ 2
n > 0.

We also denote by N(0,1) a standard normal random variable.

THEOREM 4. Let the functions {hni; i � n} in (27) be continuously differentiable in [0, 1] and satisfy the
following conditions: ∣∣h′

ni(x) − h′
ni(y)

∣∣ � bni |x − y|α, 0 < α � 1, (28)

n∑
i=1

bni = o
(
n(α+1)/2σn

)
, (29)

n∑
i=1

∣∣h′
ni(i/(n + 1))

∣∣ = o
(
nσn(ln n)−1). (30)
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Then

σ−1
n Ān

d−→ N(0, 1) as n → ∞. (31)

Remark. Let us consider the partial case

hni(x) = cnih(x),
∣∣h′(x) − h′(y)

∣∣ � K|x − y|α, 0 < α � 1.

Let also h′(0) = 0. Then, in the case 0 < α < 1, condition (29) implies condition (30), and, in the case α = 1,
for conditions (29) and (30) to be satisfied, it suffices that

n∑
i=1

|cni | = o
(
nσn(ln n)−1).

Note also that, in Theorem 4, one does not require the uniform attraction of the step function αn(t) to some
continuous function, i.e., a condition similar to (21), while, for example, in [17], such a condition is essential.

We further set, in (27), hnk(x) = xn1/2, hni(x) = 0, i �= k, where k/n → p. Then bni = 0, i � n,
Ān = √

n(Un:k − EUn:k), and

σ 2
n = n2

k/n∫
(k−1)/n

k/n∫
(k−1)/n

(
min{x, y} − xy

)
dx dy −→ p(1 − p) as n → ∞.

Consequently, all conditions of Theorem 4 are satisfied, i.e., relation (31) holds. Since EUn:k = k/(n + 1) → p

and σn → √
p(1 − p) as n → ∞, from (31) we get the well-known result (see, for example, [25]):

COROLLARY. Let k = k(n) → ∞ and k/n → p, 0 < p < 1, as n → ∞. Then we have

√
n(Un:k − p)√
p(1 − p)

d−→ N(0, 1).

Proof of Theorem 4. As shown in [6], there exists a representation of the processes Gn(t) (23) on a probability
space with the process w0(t) such that, for all x > 0,

P

(
sup

0�t�1

∣∣Gn(t) − w0(t)
∣∣ � n−1/2(C1 ln n + x)

)
� Ke−C2x, (32)

where C1, C2, and K are absolute positive constants. We further suppose that the processes Gn(t) and w0(t) are
defined on the same probability space by the method of [6].

We denote

Rn = Ān −
n∑

i=1

h′
ni(i/(n + 1))(Un:i − EUn:i ). (33)

We have

σ−1
n Ān = σ−1

n

n∑
i=1

h′
ni(i/(n + 1))(Un:i − EUn:i) + σ−1

n Rn

=
1∫

0

σ−1
n αn(t)Gn(t) dt + σ−1

n Rn
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=
1∫

0

σ−1
n αn(t)w

0(t) dt

+
1∫

0

σ−1
n αn(t)

{
Gn(t) − w0(t)

}
dt + σ−1

n Rn.

(34)

Let us estimate Rn. By (28) we have the estimate

|Rn| �
n∑

i=1

bni |Un:i − EUn:i |α+1.

From (29) and the inequality E|Un:i − EUn:i |α+1 � (DUn:i)
(α+1)/2 � n−(α+1)/2 it follows that σ−1

n E|Rn| → 0 as
n → ∞. Therefore, σ−1

n Rn −→
p

0 as n → ∞, where by −→
p

we denote the convergence in probability. Consider

the second summand on the right-hand side of (34). From (32) we get that, for every β > 0, there exists a
positive constant C(β) such that

P

(
sup

0�t�1

∣∣Gn(t) − w0(t)
∣∣ � C(β)n−1/2 ln n

)
� Kn−β.

We set

εn = C(β)
ln n

nσn

n∑
i=1

∣∣h′
ni(i/(n + 1))

∣∣ .
By (30) we have that εn → 0 as n → ∞. From this we find

P


1∫

0

σ−1
n |αn(t)|

∣∣Gn(t) − w0(t)
∣∣ dt � εn


� P

 sup
0�t�1

∣∣Gn(t) − w0(t)
∣∣ 1∫

0

σ−1
n |αn(t)| dt � εn


� P

(
sup

0�t�1

∣∣Gn(t) − w0(t)
∣∣ � C(β)n−1/2 ln n

)
� Kn−β.

Consequently,

1∫
0

σ−1
n αn(t)

{
Gn(t) − w0(t)

}
dt −→

p
0, n → ∞.

We denote

ηn =
1∫

0

σ−1
n αn(t)w

0(t) dt.
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It is clear that ηn is normally distributed (as a linear continuous functional of a Gaussian process). Clearly,
Eηn = 0. Let us find Eη2

n. Since Ew0(x)w0(y) = min{x, y} − xy, by the Fubini theorem and definition of σn

we get

Eη2
n = 1

σ 2
n

E

1∫
0

1∫
0

αn(x)αn(y)w0(x)w0(y) dx dy

= 1

σ 2
n

1∫
0

1∫
0

αn(x)αn(y)Ew0(x)w0(y) dx dy = 1.

Thus, for every n � 1, ηn is a standard normal random variable. The theorem is proved.

3.2.2. L-statistics with decomposed kernels. Consider L-statistics of the form

Ln =
n∑

i=1

cnih(Xn:i). (35)

As in [9], we do not require the monotonicity of the function h and any additional assumptions on the distribution
of a sample, i.e., X1 has an arbitrary distribution function F . Throughout this section, we suppose that h is a
left-continuous function with finite variation on finite intervals. We denote by |dh(t)| the total-variation measure
generated by h. In what follows, the existence of an integral

∫
f dh always means the finiteness of

∫ |f ||dh|.
We define the function ϕn(x) by the relation

ϕn(x) =
x∫

0

cn(t) dt,

where

cn(t) = ncni, t ∈ ((i − 1)/n, i/n], i = 1, . . . , n, cn(0) = ncn1.

One easily sees that ϕn(x) is a continuous piecewise-linear function and that

ϕn(0) = 0, ϕn(k/n) =
k∑

i=1

cni, k = 1, . . . , n;

in addition the statistic Ln admits the representation (see [9])

Ln =
∫
R

h(t) dϕn(Fn(t)),

where Fn(t) is the empirical distribution function based on the sample X1, . . . , Xn.

We introduce the following notation (under the condition of existence of the corresponding integrals):

µn =
∫
R

h(t) dϕn(F(t)), c̃n = max
1�i�n−1

|cn,i+1 − cni|,

σ 2
n =

∫
R

∫
R

cn(F (x))cn(F (y))
(

min{F(x), F (y)} − F(x)F(y)
)

dh(x) dh(y),
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Yn1 =
∫
R

cn(F (t))
(
F(t) − I{X1 < t}) dh(t).

THEOREM 5. Suppose that 0 < σn < ∞ for all n and that, moreover,

EY 2
n1I

{|Yn1| � εσn

√
n
} = o(σ 2

n ) for all ε > 0, (36)

c̃n = o
(
n−3/2σn

)
, (37)

∫
R

F(t)(1 − F(t))|dh(t)| < ∞. (38)

Then √
n(Ln − µn)

σn

d−→ N(0, 1) as n → ∞. (39)

Remark. In [17], the asymptotic normality of statistics of the form (35) was also studied; in particular, it was
shown that relation (39) holds under some moment restrictions and the following additional hypotheses:

(i) the sequence of functions cn(t) converges to a bounded function uniformly on [0, 1];

(ii) There exists c such that h(c) = 0.

In [17], a relation similar to (39) for L-statistics (35) with regular weights was also obtained. In Theorem 5,
the conditions on cni and h are weaker. Note that condition (i) means that the weights cni are asymptotically
regular. Note also that condition (ii) is an additional restriction on cni . If h(x) > 0 on the support of the
distribution F (obviously, in this case, condition (ii) is not satisfied), then, for the statement of [17] to be true,
it is necessary that

∑n
i=1 cni = o(n−1/2σn).

In the case of a regular representation of the coefficients cni , we have the following relations:

σn ∼ σ, c̃n = O
(
n−2), |Yn1| � Cξ,

where σ is obtained from σn by replacing cn(t) by J(t), and J is a Lipschitz function in the representation of
cni , ξ = ∫

R
g(t, X1)|dh(t)|, g(t, z) = F(t) for t � z and g(t, z) = 1 − F(t) for t > z. In this case, (37) is

automatically satisfied, and (36) is satisfied if Eξ 2 < ∞.

Without the requirement of regularity of the coefficients cni , one can easily construct an example where
(36)–(38) are satisfied but the sequence cn(t) does not converge in any reasonable sense to a limit function.
Let, for simplicity, h(x) = x, and let X1 be uniformly distributed on [0, 1]. Set cni = 1/n + (i − 1)δn/n for
1 � i � k and cni = 1/n + (2k − i)δn/n for k + 1 � i � 2k, k = k(n) = [n1/2+ε], and δn = n−1/2−ε. Thus, the
function cn(t) is defined on the interval [0, 2k/n]. On the remaining part of [0, 1], we extend cn(t) periodically
with period 2k/n (by the parallel shift of the “tooth” constructed). Note that 1 � cn(t) � 2. From this we easily
get that |Yn1| � 1 and 1/12 � σ 2

n � 1/3. Then all conditions of Theorem 5 are satisfied and, consequently,
relation (39) holds.

Proof of Theorem 5. Integrating by parts, we get

Ln − µn =
∫
R

h(t) d
{
ϕn(Fn(t)) − ϕn(F(t))

}
=

∫
R

{
ϕn(F(t)) − ϕn(Fn(t))

}
dh(t).

(40)
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One easily sees that the last integral is well defined because of (38). We further have

ϕn(F(t)) − ϕn(Fn(t)) = cn(F (t))(F (t) − Fn(t)) + Rn(t), (41)

where

Rn(t) =
F(t)∫

Fn(t)

{cn(x) − cn(F (t))} dx

(here the integration bounds are not ordered). Let us show that

|Rn(t)| � n2c̃n

(
Fn(t) − F(t)

)2
. (42)

Note that Rn(t) = 0 if |Fn(t)−F(t)| � 1/n. Let now (k−1)/n < F(t) � k/n, Fn(t) = m/n, where |m−k| � 1.
If m � k + 1, then

|Rn(t)| �
m∑

j=k+1

|cnj − cnk| �
m∑

j=k+1

j−1∑
i=k

|cn,i+1 − cni | � c̃n(m − k)2

� n2c̃n(Fn(t) − F(t))2.

The case m � k − 1 is similarly studied.
Consider independent identically distributed random variables

Yni =
∫
R

cn(F (t))
(
F(t) − I{Xi < t}) dh(t), i = 1, . . . , n.

It is obvious that EYn1 = 0 and

EY 2
n1 =

∫
R

∫
R

cn(F (x))cn(F (y))E
(
F(x) − I{Xi < x})

× (
F(y) − I{Xi < y}) dh(x) dh(y) = σ 2

n .

Set Sn = ∑n
i=1 Yni . From (40) and (41) we get the representation

√
n(Ln − µn)

σn

= Sn

σn

√
n

+
√

n

σn

∫
R

Rn(t) dh(t). (43)

Since relation (36) actually is the Lindeberg condition for the sequence of series of random variables {Yni; i � n},
we have that

σ−1
n n−1/2Sn

d−→ N(0, 1) as n → ∞.

Denote by rn the second summand on the right-hand side of (43). To complete the proof of the theorem, it
remains to show that rn −→

p
0 as n → ∞. For this, in turn, it suffices to show that E|rn| → 0 as n → ∞. From

(42) we get the estimate E|Rn(t)| � nc̃nF (t)(1 − F(t)). From this and from conditions (37) and (38) it follows
that

E|rn| � n3/2σ−1
n c̃n

∫
R

F(t)(1 − F(t))| dh(t)| −→ 0 as n → ∞.

The theorem is proved.
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